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    Introduction 
 The defi ned molecular composition of each compartment of the 

exo – endocytic pathway is generated by complex sorting mecha-

nisms that determine which molecules are specifi cally recruited 

into, or excluded from, the anterograde or retrograde transport 

carriers that operate in intercompartmental traffi c. For example, 

at the interface between the ER and the Golgi complex, exported 

cargo is packaged into coat protein complex (COP) II – coated car-

riers, whereas ER residents that have escaped by bulk fl ow are re-

trieved by COPI-coated retrograde vesicles. In addition, many 

resident proteins appear to avoid bulk fl ow by so-called static re-

tention mechanisms that exclude them from COPII-coated carri-

ers and, similarly, exported proteins are presumably kept out of 

retrograde vesicles that would otherwise return them to the ER 

(for review see  Bonifacino and Glick, 2004 ). 

 Although packaging into transport carriers is generally 

signal-mediated and involves direct or indirect interactions be-

tween the cargo protein and coat components (for reviews see 

 Bonifacino and Glick, 2004 ;  Lee et al., 2004 ), a mechanism 

based on recognition between sorting signals and receptors is 

less likely to underlie exclusion events. Indeed, receptors in-

volved in packaging, because of the different environments they 

encounter during transport, can fi rst bind and then release their 

cargo and, thus, be reutilized many times. Instead, hypothetical 

retention receptors would remain permanently exposed to the 

environment of the donor compartment and would thus have to 

be present in stoichiometric ratios to their ligands. More impor-

tantly, they themselves would have to be kept out of transport 

vesicles, shifting the problem of the exclusion mechanism 

from the retained substrate to its receptor. For this reason, self-

 organizational principles, based on physicochemical features of 

retained proteins, must in the end be invoked to explain sorting 

by exclusion mechanisms. One such feature, involved in sorting 

of membrane proteins, is the length/hydrophobicity of the trans-

membrane domain (TMD). 

 TMD-dependent sorting has been observed essentially 

throughout the entire exo – endocytic pathway between the Golgi 

complex, the plasma membrane and post-Golgi intracellular com-

partments, and at the ER – Golgi interface ( Bulbarelli et al., 2002 ; 

 Nufer et al., 2003 ;  Sato et al., 2003 ;  Schamel et al., 2003 ). 

Although specifi c residues or sequence motifs are involved in 

some cases ( Fiedler and Rothman, 1997 ;  Dunbar et al., 2000 ; 

T
he length and hydrophobicity of the transmembrane 

domain (TMD) play an important role in the sorting 

of membrane proteins within the secretory pathway; 

however, the relative contributions of protein – protein and 

protein – lipid interactions to this phenomenon are currently 

not understood. To investigate the mechanism of TMD-

dependent sorting, we used the following two C tail – 

anchored fl uorescent proteins (FPs), which differ only in 

TMD length: FP-17, which is anchored to the endoplasmic 

reticulum (ER) membrane by 17 uncharged residues, and 

FP-22, which is driven to the plasma membrane by its 

22-residue-long TMD. Before export of FP-22, the two 

constructs, although freely diffusible, were seen to distrib-

ute differently between ER tubules and sheets. Analyses in 

temperature-blocked cells revealed that FP-17 is excluded 

from ER exit sites, whereas FP-22 is recruited to them, al-

though it remains freely exchangeable with the surround-

ing reticulum. Thus, physicochemical features of the TMD 

infl uence sorting of membrane proteins both within the 

ER and at the ER – Golgi boundary by simple receptor-

 independent mechanisms based on partitioning.
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 Results 
 Microinjected fl uorescent protein (FP) – 22 
is visualized in the ER at early time points 
after microinjection of the cDNA and exits 
the ER by a COPII-dependent mechanism 
 In previous work, we showed that GFP-TA constructs, like the 

ones illustrated in  Fig. 1 a , are sorted differently within the secre-

tory pathway. A construct bearing the TMD of cyt b5 (FP-17) re-

sides in the ER, whereas one with a lengthened TMD (FP-22) 

escapes from the ER and localizes to the plasma membrane and 

Golgi region of transfected cells ( Bulbarelli et al., 2002 ). To visu-

alize FP-22 while still in the ER and, thus, image the early steps 

of TMD-dependent sorting, we generated a pulse of synchronized 

expression of the two constructs by microinjecting cell nuclei 

with the corresponding cDNAs. As shown in  Fig. 1 b  (left), imag-

ing of cells at short times (1 h) after the microinjection permitted 

visualization of both constructs in the ER. After a further 30 min 

in the presence of cycloheximide, FP-22 was seen to concentrate 

in the Golgi region (middle), and 1 h later it had decreased in the 

Golgi and moved to the plasma membrane (right). In contrast, 

FP-17 in the same cells remained in the ER at all time points. 

 Because some proteins may exit the ER by COPII-

in dependent pathways ( Hasdemir et al., 2005 ;  J ü schke et al., 2005 ; 

 Karhinen et al., 2005 ), we investigated whether FP-22 export is 

inhibited by a dominant-negative (H79G) form of Sar1 that 

blocks budding of COPII-coated vesicle at ER exit sites (ERES; 

 Aridor et al., 1995 ). To this end, we microinjected the FP-22 

coding plasmid into cells that had been transfected 12 h earlier 

with H79G-Sar1 cDNA. To identify the transfected cells, solu-

ble YFP cDNA was transfected together with the Sar1 construct. 

As shown in  Fig. 1 c , in transfected cells (left and middle), FP-22 

failed to be exported and was totally localized in the ER even 

at 6 h after microinjection, whereas in the untransfected cells 

(right) it was effi ciently transported to the plasma membrane. 

A similar COPII dependency for FP-22 export was shown under 

conditions of acute dominant-negative Sar1 inhibition in cells 

doubly microinjected with H79G-Sar1 protein in the cytoplasm 

and FP-22 cDNA in the nucleus (unpublished data). 

 Temperature blocks demonstrate sorting 
of FP-17 and -22 at ERES 
 To investigate whether the ER residency of FP-17 is caused by 

recycling from the intermediate compartment (IC), we incubated 

microinjected cells at 15 ° C, a temperature that causes accu-

mulation of both exported and recycling proteins in this com-

partment ( Kuismanen and Saraste, 1989 ;  Jackson et al., 1993 ). 

FP-17 and -22 localization to the IC was then investigated in 

the temperature-blocked cells after immunostaining for the IC 

marker, endoplasmic reticulum – Golgi intermediate compart-

ment (ERGIC) – 53/p58 ( Saraste et al., 1987 ;  Schweizer et al., 

1988 ). As shown in  Fig. 2 c , in cells kept at 37 ° C for 75 min 

after microinjection, FP-22 was mainly localized in the ER, 

 although it also partially colocalized with ERGIC-53. After 3 h 

at 15 ° C, it concentrated in ERGIC-53 – positive IC elements 

( Fig. 2 d ). In contrast, FP-17 showed no detectable colocaliza-

tion with ERGIC-53 either before ( Fig. 2 a ) or after ( Fig. 2 b ) the 

 Wang et al., 2002 ), this type of sorting is more commonly 

sequence-independent, with an observed correlation between 

increased TMD length/hydrophobicity and sorting to later stations 

of the secretory pathway ( Bretscher and Munro, 1993 ;  Bulbarelli 

et al., 2002 ;  Karsten et al., 2004 ). Because the membranes of the 

secretory pathway become thicker and more rigid from the ER 

toward the cell surface (for review see  Sprong et al., 2001 ), this 

correlation might refl ect a thermodynamic advantage for protein-

lipid assemblies in which TMDs and bilayers are hydrophobi-

cally matched ( Bretscher and Munro, 1993 ;  Dumas et al., 1999 ). 

 TMD-dependent sorting could, in principle, be based on 

recruitment into and/or exclusion from transport carriers of the 

substrate protein. At the ER – Golgi interface, the fi rst of these 

mechanisms operates via a retrieval receptor, rer1p, which, by 

recognizing general features of the TMD, recruits escaped ER 

residents into retrograde vesicles ( Fullekrug et al., 1997 ;  Sato 

et al., 1997, 2003 ;  Letourneur and Cosson, 1998 ). An involvement 

of the second mechanism, exclusion from anterograde vesicles, 

has also been suggested ( Pedrazzini et al., 2000 ;  Pentcheva et al., 

2002 ;  Schamel et al., 2003 ) but fi rm evidence in support of this 

is lacking. Analogous to what was hypothesized for Golgi pro-

teins ( Bretscher and Munro, 1993 ), such exclusion could be 

based on simple partitioning of the TMD into lipid domains that 

differ from the bilayer of budding transport carriers. 

 During the past years, our group has used C tail – anchored 

(TA) proteins as models to investigate the molecular basis of 

TMD-dependent sorting at the ER – Golgi interface. Because of 

their simple topology, consisting of a cytosolic N-terminal region, 

followed by a TMD very close to the C terminus (for review see 

 Borgese et al., 2003 ), these proteins have clearly revealed a 

role for the TMD in keeping resident membrane proteins from 

escaping to downstream compartments. When the short and 

moderately hydrophobic TMDs of resident TA proteins are mu-

tated to longer and more hydrophobic ones, the resulting protein 

variants escape from the ER and reach the plasma membrane. 

This effect is sequence independent ( Honsho et al., 1998 ; 

 Bulbarelli et al., 2002 ) and is transferable to fusion proteins, in 

which the cytosolic domain of the native protein is substituted 

with GFP (for review see  Borgese et al., 2003 ). An open question 

is whether the sorting occurs by retrieval from retrograde trans-

port carriers or by exclusion from anterograde transport carriers. 

 We previously demonstrated that cytochrome (cyt) b5, a 

TA protein that resides in the ER by a TMD-dependent mecha-

nism, recycles very slowly through the cis-Golgi, suggesting 

that it is held back by mechanisms operating early at the ER –

 Golgi interface ( Pedrazzini et al., 2000 ). To investigate these 

mechanisms, we have now compared the very early steps of 

traffi cking of two model TA proteins that, because of their dif-

ferent TMD length, have different destinations within the secre-

tory pathway ( Bulbarelli et al., 2002 ). We fi nd that the two 

proteins are partially segregated from each other already within 

the ER, showing different distributions between ER tubules, 

sheets, and exit sites. Because both constructs are freely diffus-

ible, these results cannot be explained by their inclusion in large 

supramolecular protein assemblies but are instead consistent 

with simple partitioning effects based on different physico-

chemical differences between ER subdomains. 

D
ow

nloaded from
 http://rup.silverchair.com

/jcb/article-pdf/181/1/105/1884136/jcb_200710093.pdf by guest on 20 M
arch 2024



107 TRANSMEMBRANE DOMAIN – DEPENDENT SORTING  •  RONCHI ET AL.

analysis showed that after the 10 ° C block, the percentage of  COPII 

puncta positive for FP-22 doubled, whereas FP-17 recruitment 

was unaffected ( Fig. 3 c ). Analysis of the Sec23 fl uorescence after 

subtraction of the FP signal (see Materials and methods) con-

fi rmed a statistically signifi cant difference in COPII colocaliza-

tion of the two FPs after the 10 ° C block ( Fig. 3 d ). 

 As a positive control for recruitment of a transported 

membrane protein to ERES, we performed the same 10 ° C block 

experiment on cells microinjected with the GFP-tagged tempera-

ture-sensitive mutant (ts045) of vesicular stomatitis virus glyco-

protein (VSVG; VSVG-GFP). In agreement with previously 

published results ( Mezzacasa and Helenius, 2002 ), at the non-

permissive temperature for transport misfolded VSVG-GFP 

temperature block, indicating that it does not have access to the 

IC under these conditions. 

 We then investigated whether FP-17 and -22 are recruited 

differently to ERES. 75 min after microinjection, cells were shifted 

to 10 ° C, a condition that blocks exit from the ER ( Tartakoff, 1986 ; 

 Lotti et al., 1996 ;  Mezzacasa and Helenius, 2002 ). The cells were 

then analyzed for colocalization of the expressed FPs with endog-

enous COPII, revealed by immunostaining of the coat component 

Sec23. As shown in  Fig. 3 a , both FP-17 and -22 appeared dis-

persed in the ER after incubation at reduced temperature. Never-

theless, examination at higher magnifi cation revealed that FP-17 

was often excluded from Sec23-positive puncta, whereas FP-22 

was enriched in Sec23-positive puncta ( Fig. 3 b ). Quantitative 

 Figure 1.    After cDNA microinjection, FP-17 
remains in the ER, wheras FP-22 is exported 
by a COPII mechanism and travels through 
the Golgi complex to the plasma membrane.  
(a) Schematic representation of the two con-
structs. The N-terminal monomeric EGFP, 
Cerulean or Venus (green), are followed, 
in sequence, by the following: a linker (red) 
containing the myc epitope, a repeated Gly-
Ser sequence, and residues 94 – 106 of rabbit 
cyt b5; the TMD (yellow) of cyt b5 (17 residues) 
or a modifi ed version thereof extended by 
5 residues (ILAAV); and the seven-residue 
C-terminal polar peptide (blue) of rabbit cyt b5. 
The N-terminal FP is exposed to the cytosol 
( Bulbarelli et al., 2002 ). (b) CV1 cells were 
microinjected with the cDNAs coding for 
Venus-17 and Cerulean-22 (left) or Cerulean-
17 and Venus-22 (middle and right). 60 min 
after microinjection, 30  μ g/ml cycloheximide 
was added. Cells were imaged alive by wide 
fi eld microscopy for the two FPs at the indi-
cated times after microinjection. The middle 
and right columns show the same cell, 30 (mid-
dle) and 90 (right) min after the addition of 
cycloheximide. In the bottom row, which shows 
the merged images for each time point, red and 
green pseudocolors are attributed to FP-22 
and -17, respectively. (c) Exit of FP-22 from 
the ER is COPII-dependent. CV1 cells were 
cotransfected with H79G-Sar1 and YFP (as a 
marker of transfection; left) and 12 h thereafter 
microinjected with the cDNA coding for FP-22. 
Cells were fi xed 6 h later and imaged by wide-
fi eld microscopy. 2D-deconvolved images are 
shown. The left and middle show the same fi eld 
of microinjected cells visualized for YFP (left), 
and Cerulean-22 (middle), which remains in 
the ER in the H79G-Sar1 – expressing cells. The 
right shows two microinjected cells that were 
negative for YFP and in which Cerulean-22 is 
at the cell surface. Bars, 10  μ m.   
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whereas the FP constructs were visualized with GFP antibody 

and a secondary antibody conjugated to 18-nm gold particles (for 

a characterization of the labeling specifi city of the anti-GFP anti-

body see Table S2). 18-nm gold particles were often seen clus-

tered near the 12-nm particles in cells expressing FP-22 ( Fig. 4 b ) 

but not in cells expressing FP-17 ( Fig. 4 a ). 

 To perform a quantitative analysis of the micrographs, we 

considered portions of ER continuous with an anti-Sec16 –

  labeled membrane and within 60 nm of the 12-nm gold particle 

as ERES. In this unbiased analysis, morphology was not a crite-

rion for the defi nition of an ERES ( Fig. 4, c – g ; for details see 

Materials and methods and Table S3, available at http://www

.jcb.org/cgi/content/full/jcb.200710093/DC1). The results of this 

analysis indicated that FP-22 and -17 were signifi cantly more 

and less concentrated, respectively, in ERES than expected on 

the basis of a random distribution within the ER ( Fig. 4 g ). 

Thus, the TMD-dependent sorting process operates both by 

exclusion of the short TMD and by weak recruitment of the 

long TMD bearing protein to ERES. 

 FP-22 and VSVG travel out of the ER 
in the same carriers 
 As shown in  Fig. 5 , when cells were coinjected with FP-22 and 

VSVG-YFP and kept at the permissive temperature for VSVG, 

 localized very poorly to ERES ( Fig. 3 c ). The subsequent low tem-

perature incubation lead to recruitment of the viral protein to  > 70% 

of COPII-positive structures, compared with  � 35% in the case of 

FP-22 ( Fig. 3 c ). Subtraction analysis confi rmed that VSVG-GFP 

colocalized with COPII better than FP-22 did after the temperature 

block ( Fig. 3 d ). Thus, the viral glycoprotein is recruited to ERES 

more effi ciently than FP-22, presumably because of the diacidic 

export signal in its cytosolic tail ( Nishimura and Balch, 1997 ). 

 Immunogold analysis of TMD-dependent 
sorting at ERES 
 To investigate the different recruitment of FP-17 and -22 to ERES 

at higher resolution, we performed immunogold experiments on 

cryosections of transfected HeLa cells subjected to a 10 ° C block 

12 h after transfection, a time at which approximately half of the 

FP-22 is in the ER, with the remaining protein in the Golgi or at 

the cell surface ( Fig. 4 d ). To identify ERES by labeling of endog-

enous components, we tested several antibodies and chose an 

antibody against Sec16 ( Watson et al., 2006 ;  Bhattacharyya and 

Glick, 2007 ) that yielded low levels of labeling but was highly 

specifi c for the ER (for the characterization of its specifi city see 

Table S1, available at http://www.jcb.org/cgi/content/full/

jcb.200710093/DC1). The anti-Sec16 antibody was visualized 

with secondary antibodies conjugated to 12-nm gold particles, 

 Figure 2.    Different effect of 15 ° C tempera-
ture block on FP-17 and -22 localization.  CV1 
cells were microinjected with the cDNA coding 
for EGFP-17 or -22. After 75 min of incubation 
at 37 ° C (a and c), cells were fi xed or further 
incubated at 15 ° C (b and d) for 3 h before 
fi xation. The cells were immunostained for 
ERGIC-53, with the use of Alexa 568 secondary 
antibodies, and analyzed by confocal micros-
copy. Each column shows the same fi eld visu-
alized for GFP (top) or ERGIC-53 (middle), as 
well as the merged image with the indicated 
pseudocolors (bottom). Bar, 10  μ m.   
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To follow the subsequent export step, the block was released 

on the microscope stage and cells were imaged during recovery. 

An example of a moving structure positive for both proteins 

is illustrated in  Fig. 6 b . A quantitative analysis of similar time-

lapse series is illustrated in  Fig. 6 (d and e) , where the spatial 

and temporal origins are defi ned as the position and last time 

point at which no movement of the considered structure was 

detectable. During a 1-min time interval, in which the mean 

displacement of the analyzed carriers was 3  μ m ( Fig. 6 d ), the 

fl uorescence intensity (FI) of both fl uorophores was unaltered 

the viral glycoprotein was never visualized in the ER, and was 

transported more rapidly to the plasma membrane than FP-22. 

We asked whether the different rate of transport of VSVG and 

FP-22 could be explained entirely on the basis of their different 

effi ciency of recruitment to ERES ( Fig. 3 ) or whether differences 

in transport rate occur also after budding of transport carriers. 

 When cells coinjected with Cerulean-22 and VSVG-YFP 

were blocked at 10 ° C, nearly all COPII-positive structures that 

contained Cerulean-22 were also positive for VSVG, indicating that 

the two proteins are recruited to the same ERES ( Fig. 6, a and c ). 

 Figure 3.    Different accumulation of FP-17 and 
-22 at ERES after a 10 ° C temperature block.  
(a and b) CV1 cells were microinjected with the 
cDNA coding for EGFP-17 or -22, incubated 
for 75 min at 37 ° C, and then at 10 ° C for 3 h. 
The cells were then fi xed and immunostained 
for Sec23 with an Alexa 568 –  conjugated 
secondary antibody. Each row shows the 
same fi eld visualized for GFP (left) or Sec23 
(middle), as well as the merged image with 
the indicated pseudocolors (right). b shows en-
largements of the boxed areas in a. Arrows in 
b indicate Sec23-positive puncta from which 
FP-17 appears excluded or in which FP-22 ap-
pears concentrated. Bars: (a) 10  μ m; (b) 2  μ m. 
(c) Percentage of Sec23-positive structures en-
riched in FP-17, FP-22, or VSVG-GFP before 
and after the 10 ° C temperature block. The 
analysis was performed on cells like the ones il-
lustrated in a and b. Averages + SD are shown 
(FP-17 37 ° C,  n  = 9 cells; FP-17 10 ° C,  n  = 12 
cells; FP-22 37 ° C,  n  = 7 cells; FP-22 10 ° C,  n  = 
12 cells; VSVG 39 ° C,  n  = 7 cells; VSVG 10 ° C, 
 n  = 6 cells). White and black columns refer, re-
spectively to cells kept at 37 (FP-17 and -22) or 
39 ° C (VSVG-GFP) for 75 min after microinjec-
tion and to cells incubated for a further 3 h at 
10 ° C. The values were determined by manual 
counting (see Materials and methods). **, P  <  
0.0001 (determined by one way analysis of 
variance followed by Fischer ’ s protected least 
square difference analysis). (d) Subtraction 
analysis of cells after the 10 ° C block. FI of 
Sec23 was determined after subtraction of the 
fl uorescence of the indicated protein. Normal-
ized  � FI is the ratio of the mean intensities of 
the subtracted to the unsubtracted image (see 
Materials and methods). A lower normalized 
 � FI indicates a higher degree of colocaliza-
tion. Means + SD are shown (FP-17,  n  = 16; 
FP-22,  n  = 13; VSVG,  n  = 9). *, P  <  0.05 (for 
the difference between FP-22 and FP-17 and 
between FP-22 and VSVG, determined by the 
Kruskal-Wallis nonparametric test followed by 
Dunn ’ s post-analysis.   
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( Fig. 7 c ). More specifi cally, FP-17 was found both in tubular 

and cisternal elements, whereas FP-22 was excluded from pe-

ripheral sheets ( Fig. 7 , enlargements in the three bottom rows), 

although it did localize to the perinuclear cisterna ( Fig. 7 c ). 

The different distribution of the two proteins was not caused by 

the attached FP variant because when the two variants  (Cerulean 

and Venus) of each construct with the same TMD were expressed 

together, excellent colocalization was observed ( Fig. 7, a and b ) 

and because the same difference in localization of FP-17 and -22 

was observed when the opposite combination of FP spectral 

variants was used (Fig. S1, available at http://www.jcb.org/cgi/

content/full/jcb.200710093/DC1). Segregation between the two 

constructs was also observed at longer times after expression if 

export was inhibited by the dominant-negative mutant of Sar1p 

(unpublished data). 

 A recent study demonstrated that reticulon (Rtn) proteins 

induce ER tubule formation and are excluded from cisternal ele-

ments ( Voeltz et al., 2006 ). We therefore compared the distribution 

of the two constructs with that of Rtn4a. As shown in  Fig. 8 , 

Rtn4a was restricted to the edges of ER elements fi lled with 

with respect to the signal at the origin ( Fig. 6 e ), indicating that 

the two proteins accumulate at functional ERES and then travel 

out of the ER together. The relatively slow movement of the 

transport carriers compared with previous reports in the litera-

ture ( Presley et al., 1997 ;  Scales et al., 1997 ) is presumably 

caused by the low temperature at which we performed our ob-

servations. Thus, FP-22 accumulates at the same ERES as VSVG 

and its ineffi cient accumulation at these sites can account for its 

slower exit from the ER. Whether it is recruited with similar low 

effi ciency into transport carriers at subsequent steps of the se-

cretory pathway remains to be established. 

 At 37 ° C, FP-17 and -22 partition into 
different ER domains 
 Although FP-17 and -22 appear to colocalize in the ER at early 

times after microinjection ( Fig. 1 ), closer inspection re-

vealed that they occupy different domains within the organelle. 

When cells expressing FP-17 and -22 were examined by con-

focal microscopy 75 min after microinjection, a clear differ-

ence in their localization within the ER could be observed 

 Figure 4.    Immunogold electron microscopy 
analysis of FP-17 and  - 22 distribution in the 
ER and ERES after the 10 ° C block.  (a – f) HeLa 
cells transfected with Venus-17 (a and c) or -22 
(b and d) and incubated for 3 h at 10 ° C were 
processed for cryosectioning as described 
in Materials and methods. FPs and the ERES 
marker Sec16 are labeled with 18- and 12-nm 
gold particles, respectively. Arrowheads in 
a and c indicate 12-nm gold particles, which 
are in close proximity to 18-nm gold particles 
in the case of cells expressing FP-22 (b) but not 
FP-17 (a). c – f show two examples of how im-
age analysis was performed. Starting from the 
images in c and d, we manually reconstructed 
the drawings in e and f, attributing unequivo-
cally identifi able membrane profi les to ER 
(black) and, among these, membranes within 
60 nm of a 12-nm gold particle to ERES (in 
red). Other intracellular membranes (not con-
sidered) are represented in gray. The dashed 
line in f represents the plasma membrane. Note 
that, as expected, in these transfected cells 
FP-22 is present also at the plasma membrane. 
Gold particles falling within 20 nm of ER (or 
ERES) and considered in the analysis are color-
coded as follows: 12-nm gold particles used 
to identify ERES, red; 18-nm gold particles 
attributed to ER or to ERES, black and cyan, 
respectively. Bars, 100 nm. (g) Relative label-
ing index for FP-17 and -22 at the ER (white) 
and ERES (black). The analysis, performed on 
25 and 19 micrographs for FP-17 and -22, re-
spectively, demonstrates that neither of the two 
FP constructs is randomly distributed between 
ER and ERES, but although FP-17 is excluded 
from ERES, FP-22 is concentrated therein. 
Statistical signifi cance was assessed by a 
test for randomness, modifi ed from  Mayhew 
et al., (2003 ; *, P = 0.044; **, P = 0.0007). 
For details, see Materials and methods and 
 Tables S1 – 3, available at http://www.jcb.org/
cgi/content/full/jcb.200710093/DC1.   
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111 TRANSMEMBRANE DOMAIN – DEPENDENT SORTING  •  RONCHI ET AL.

even higher D than FP-17, possibly refl ecting its restriction to 

tubular elements. 

 Because the FRAP technique would not distinguish small 

oligomers from monomers, we also compared the sedimenta-

tion of FP-17 and -22 in detergent-solubilized cell lysates on 

sucrose gradients ( Fig. 9b ). As a control, we analyzed the distri-

bution of endogenous ribophorin I, a protein known to be part of 

large complexes in the ER ( Nikonov et al., 2002 ). Indeed, ri-

bophorin (M r   � 68,000) was partly recovered in complexes run-

ning ahead of the catalase marker (M r  240,000) as well as in the 

pellet. In contrast, both FP-17 and -22 showed a sharp peak in 

fraction 3, ahead of the cyt c marker (M r  12,000) but well be-

hind catalase, as expected on the basis of their monomeric M r  of 

 � 34,000. Thus, two methods failed to reveal differences in the 

state of aggregation of FP-17 and -22. 

 To further investigate the dynamics of FP-22 partitioning in 

the ER, we analyzed its recovery after bleaching at single exit 

sites, comparing it with VSVG. Cells were microinjected with 

the cDNA coding for either of the two cerulean-tagged pro-

teins, together with YFP-tagged Sec23 cDNA, to identify ERES. 

After incubation for 3 h at 10 ° C, the cells were kept at the same 

temperature on the microscope stage, and small areas encompass-

ing single ERES were subjected to FRAP analysis. The examples 

of  Fig. 10 (a and b)  illustrate how FP-22 fl uorescence recovered 

quite rapidly at ERES (b) in contrast to VSVG, which exhibited 

a low recovery over the time period analyzed (a). The mean 

time course of recovery in multiple ERES ( Fig. 10 c ) clearly re-

vealed the different behavior of the two proteins. Whereas 

FP-22 FI in the bleached ERES rapidly reached a plateau value of 

FP-17 (left) but was present on FP-22 – positive tubules (right). 

Thus, the construct with the longer TMD preferentially partitions 

into curved domains within the peripheral ER. Surprisingly, how-

ever, and at variance with the Rtns ( Voeltz et al., 2006 ), FP-22 

was not excluded from the perinuclear cisterna, refl ecting struc-

tural/compositional differences between perinuclear and periph-

eral sheets that remain to be characterized. 

 FP-22 is freely diffusible within the ER 
and at ERES 
 Based on sucrose gradient and FRAP analysis, our previous work 

( Pedrazzini et al., 2000 ;  Snapp et al., 2003b ) indicated that 

cyt b5 and GFP-17 are freely diffusible in the ER, excluding the 

possibility that immobilization is responsible for its retention. 

On the other hand, export of many proteins requires oligomer-

ization (for review see  Lee et al., 2004 ). Therefore, we consid-

ered the possibility that the different distribution of the two FP 

constructs within the ER and at ERES could be caused by a 

higher propensity of FP-22 to form oligomers. 

 We fi rst compared the mobility of FP-17, FP-22, and 

VSVG by the FRAP technique after a 75-min incubation of the 

microinjected cells at 39 ° C ( Fig. 9 a ). FP-17 displayed a high 

mobile fraction (M f ) and the same diffusion coeffi cient (D) as 

found in transfected cells in our previous work ( Snapp et al., 

2003b ) with the same construct (called GFP-b(5)tail in that study), 

confi rming its high mobility within the ER membrane. VSVG 

was also freely diffusible, although its D was somewhat lower 

than the one previously calculated by  Nehls et al., (2000)  with 

the use of a different procedure. Finally, FP-22 displayed an 

 Figure 5.    Different rate of transport of FP-22 
and VSVG to the plasma membrane.  CV1 
cells, microinjected with the cDNA coding for 
Cerulean-22 and VSVG-YFP, were incubated for 
75 min at 30 ° C and then at the same tempera-
ture in the presence of 50  μ g/ml cycloheximide 
for the indicated times. Each row shows the 
same fi eld visualized for the indicated protein 
as well as the merged image with the indicated 
pseudocolors. Even at the early time points, 
most of the viral protein is in the Golgi com-
plex, whereas FP-22 is mainly in the ER. 45 min 
after cycloheximide addition, both the proteins 
are found in the Golgi and at the plasma mem-
brane, although FP-22 is still present in the ER. 
At 75 min, although YFP-VSVG is almost totally 
localized at the plasma membrane, FP-22 is 
still found in the Golgi (arrows) and in the ER. 
Note that the nuclear envelope is visible in the 
cerulean (FP-22) but not the YFP channel 
(arrowheads). Bars, 20  μ m.   
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into the bulk ER contained in the optical sections above and 

below the exit sites and supports the idea that transient inter-

actions not involving saturable binding sites underlie the ac-

cumulation of FP-22 at ERES. 

 Discussion 
 The structure and function of ER subdomains and the dy-

namic relationship between them is currently a subject of intense 

investigation ( Snapp et al., 2003b ;  Voeltz et al., 2006 ). In the 

present study, we demonstrate that TMD length/hydrophobicity 

can determine how a membrane protein partitions between ER 

tubular, cisternal, and exit site domains, suggesting a role for 

protein – lipid interactions in sorting phenomena both within the 

ER and between the ER and the Golgi complex. 

 Although there is detailed information on the retrieval 

phenomena that operate within the exo – endocytic pathway to 

90% of the prebleach intensity, VSVG slowly increased during 

the entire recovery period. The latter fi nding might be explained 

in part by the much lower amount of surrounding ER as source of 

fl uorescent VSVG molecules diffusing into the ERES and is also 

compatible with the idea that VSVG is restricted at ERES by 

interacting with limiting binding sites. 

 We also compared the recovery kinetics of FP-22 at ERES 

with its recovery in the ER outside of exit sites. To do this, cells, 

microinjected with cDNA for Sec23-YFP and FP-22 and in-

cubated at 10 ° C as in the previous paragraph, were subjected to 

bleaching over a 2.4- μ m strip encompassing the entire width of 

the cell and containing at least one ERES. Recoveries in the 

entire strip and in the ERES within it were then compared. 

The extent and rate of recovery of FP-22 within the bulk ER and 

into exit sites were similar ( Fig. 10 d ). The rapid attainment in 

ERES of prebleach values (which were at least twice those of 

the surrounding ER) cannot be explained merely by recovery 

 Figure 6.    Analysis of FP-22 and VSVG-YFP 
during export from the same ERES.  (a) Imag-
ing of fi xed cells. CV1 cells, microinjected with 
the cDNAs coding for Cerulean-22 and VSVG-
 Venus, were incubated for 75 min at 39.5 ° C and 
then for 3 h at 10 ° C before fi xation. Cells were 
immunostained for Sec23, using Cy5-conju-
gated secondary antibodies, and analyzed by 
confocal microscopy. Single-channel images 
for the three proteins, and a merged image 
with the indicated pseudocolors are shown. 
The arrowheads indicate Sec23-positive struc-
tures containing both FP-22 and VSVG. The 
arrows indicate a structure positive for Sec23 
and VSVG but lacking Cerulean-22. Bar, 10  μ m. 
(b) Time-lapse imaging of carriers leaving 
the ER with VSVG and FP-22 cargo. Cells were 
microinjected, incubated as described in a, 
and then imaged while warming to 20 ° C (see 
Materials and methods). Each column shows 
images of the same fi eld at the indicated times 
after the start of imaging in the Cerulean and 
YFP channels, as well as the merge of the two 
channels (bottom) with the indicated pseudo-
colors. Arrowheads indicate a moving car-
rier and open circles in the merge indicate 
the initial position of the structure. Bar, 5  μ m. 
(c) Results of quantifi cation of images like the 
one in a. The percentage of ERES positive for 
the indicated protein is shown. Numbers are 
means  ±  SD ( n  = 6). (d) Mean displacement 
versus time of moving carriers. Initiation of 
movement at different ERES was not synchro-
nous, and the 0 time point corresponds to the 
last image before initiation of movement for 
each carrier. For each carrier at each time 
point, the displacement was calculated as 
the sum of displacements occurring during all 
preceding time intervals. Shown are means  ±  
SD. (e) FI in the Cerulean and YFP channels of 
moving carriers normalized to the FI at their 
origin. Carriers in each of seven images were 
classifi ed according to displacement from the 
origin within the distance intervals indicated 
on the abscissa. Means  ±  SD are shown. The 
data in d and e were acquired from the analy-
sis of fi ve cells.   
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gold analysis confi rmed that FP-22 undergoes mild accumula-

tion at ERES after the temperature block, whereas FP-17 is at 

least partially excluded from these sites. Furthermore, FP-17 

and -22 were partially segregated within the ER in the absence 

of any temperature block. Although FP-17 was present both 

in tubules and sheets, FP-22 was clearly excluded from periph-

eral sheets and restricted to Rtn4a-positive tubules and to the 

nuclear envelope. 

 The TMD-dependent sorting reported here is diffi cult to 

reconcile with a receptor-mediated mechanism (see also the 

considerations in the Introduction). It has been suggested that 

resident proteins are excluded from ERES by receptor-indepen-

dent mechanisms simply because they are not recognized by the 

export machinery ( Pentcheva et al., 2002 ). However, this idea is 

at variance with recognized bulk fl ow phenomena ( Martinez-

Menarguez et al., 1999 ) and with the observation that removal 

of identifi ed export signals usually causes slowdown but not 

complete block of the modifi ed protein ’ s export ( Fiedler et al., 

1996 ;  Nishimura and Balch, 1997 ;  Iodice et al., 2001 ). Thus, we 

postulate that a positive but receptor-independent mechanism 

underlies the exclusion of FP-17 from ERES. Such a mecha-

nism could, in principle, rely on immobilization within a pro-

tein matrix ( Hammond and Helenius, 1995 ) or on partitioning 

phenomena that would drive FP-17 into membrane domains 

excluded from budding transport carriers ( Ceppi et al., 2005 ). 

The high diffusion coeffi cient of FP-17, determined by FRAP 

counteract escape of proteins from their compartment of resi-

dence (for reviews see  Bonifacino and Glick, 2004 ;  Lee et al., 

2004 ), it has been more diffi cult both to demonstrate and to elu-

cidate the static retention mechanisms that underlie exclusion of 

resident proteins from transport carriers. Cell-free budding as-

says have provided a powerful tool to investigate the role of ex-

port signals in cargo packaging (for reviews see  Bonifacino and 

Glick, 2004 ;  Lee et al., 2004 ), but their low effi ciency limits 

their usefulness in distinguishing weak recruitment into transport 

carriers from outright exclusion. In in vivo approaches, failure of 

a protein to accumulate in ERGIC-53 – positive elements after a 

15 ° C temperature block was often taken as evidence for its static 

retention ( Pentcheva et al., 2002 ;  Schamel et al., 2003 ). How-

ever, recycling through early IC elements might not be easily 

discernable and could be insensitive to the temperature block, 

as suggested by undetected accumulation of some recycling pro-

teins in ERGIC-53 – positive elements ( Jackson et al., 1993 ; 

 Stornaiuolo et al., 2003 ). 

 In this paper, to elucidate the mechanism of TMD-dependent 

sorting at the ER – Golgi interface, we have overcome these limi-

tations by directly comparing the recruitment of our two model 

TA proteins to ERES, the ER subdomains where anterograde 

transport carriers are generated ( Watson and Stephens, 2005 ). 

By immunofl uorescence, a 10 ° C temperature block resulted in the 

recruitment of FP-22 to ERES, whereas FP-17 ’ s localization to 

these sites remained low. High resolution quantitative immuno-

 Figure 7.    FP-17 and -22 segregation within the ER.  
Cells were microinjected with cDNAs coding for different 
couples of FPs, as indicated in the top, and fi xed after 
75 min at 37 ° C. The bottom three rows show single-channel 
and merged images, with the indicated pseudocolors, of 
enlargements of the boxed areas in the top. Note sheet-
like structures in c containing FP-17, from which FP-22 is 
excluded. Bars: (top) 10  μ m; (enlargements) 5  μ m.   
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in formation of COPII-coated carriers at ERES ( Matsuoka et al., 

1998 ;  Pathre et al., 2003 ;  Blumental-Perry et al., 2006 ), and 

phosphatidylserine with long saturated acyl chains accumulates 

in transport vesicles generated in vitro from microsomes ( Sturbois-

Balcerzak et al., 1999 ). Other compositional differences, for 

instance in sterols ( Runz et al., 2006 ) and/or sphingolipids 

( Rosenwald et al., 1992 ;  Muniz and Riezman, 2000 ), could 

contribute to a partitioning effect underlying the observed TMD-

dependent sorting at ERES. In addition, the raft-like micro-

domains that have been suggested to exist in the ER ( Bagnat et al., 

2000 ;  Muniz and Riezman, 2000 ;  Lee et al., 2002 ;  Browman et al., 

2006 ;  Campana et al., 2006 ;  Smith et al., 2006 ) could be related 

to the partial segregation of the two proteins within this organelle. 

 Our previous results with a model system consisting of 

proteoliposomes reconstituted either with wild-type cyt b5 or 

cyt b5 with an extended TMD are fully consistent with the hypo-

thesis of lipid-based sorting ( Ceppi et al., 2005 ). Differential 

analysis ( Snapp et al., 2003b ; this study), excludes the involve-

ment of the fi rst of these mechanisms and suggests that the sec-

ond one underlies the TMD-dependent sorting reported here. 

 Reasoning in a similar way, it is diffi cult to explain the ex-

clusion of freely diffusible FP-22 from ER-peripheral sheets on 

the basis of a receptor-mediated mechanism. Furthermore, the 

fi nding that, after bleaching, FP-22 fl uorescence recovered at the 

same rate in ERES as in the bulk ER is compatible with a model 

positing that FP-22 ’ s accumulation in ERES is simply because 

of a lower exit rate than entry rate constant of the reporter con-

struct and that no limiting binding site is involved in retaining it 

within these ER subdomains. 

 What physicochemical differences of the ER bilayer could 

justify the TMD-dependent partitioning observed in the present 

study? FP-22 ’ s TMD is more hydrophobic than FP-17 ’ s, and, if 

in  � -helical conformation, is predicted to be longer than the thin 

hydrophobic core ( � 2.6 nm; for review see  Sprong et al., 2001 ) 

of the ER membrane (positive mismatch). FP-22 ’ s TMD could 

thus seek ER subdomains in which the lipid composition better 

matches its length/hydrophobicity. Although detailed informa-

tion is lacking so far, lipid compositional differences between 

ERES, transport carriers, and the bulk of the ER are very likely 

to exist. For instance, acidic phospholipids, namely phospha-

tidic acid and phosphtaidylinositol-4-phosphate play key roles 

 Figure 8.    Rtn4a is excluded from FP-17 – positive ER cisternae.  Cells were 
microinjected with cDNAs coding for EGFP-17 or -22 (both lacking the myc 
epitope in the linker region) and myc-tagged Rtn4a, as indicated in the 
top. Cells were fi xed after 75 min at 37 ° C, and Rtn4a was revealed with 
an anti-myc monoclonal followed by secondary Alexa 568 – conjugated 
antibodies. The bottom 3 rows show single-channel and merged images, 
with the indicated pseudocolors, of enlargements of the boxed areas in the 
top panels. Bars: (top) 20  μ m; (enlargements) 4  μ m.   

 Figure 9.    State of aggregation of FP-17 and -22 investigated by two 
different methods.  (a) FRAP analysis of the two constructs in the ER. CV1 
cells were microinjected with the cDNA coding for EGFP-17, EGFP-22, 
or VSVG-EGFP. FRAP experiments were performed after 75 min. Values 
in the ordinate are FI normalized to the prebleach value (see Materials 
and methods). Data points are means  ±  SEM for FP-17 (magenta;  n  = 11), 
FP-22 (blue;  n  = 10), and VSVG (orange;  n  = 6). The table gives the 
estimated D (in  μ m 2 /sec) and M f  values  ±  SEM. Videos 1 and 2 (available 
at http://www.jcb.org/cgi/content/full/jcb.200710093/DC1) illustrate 
typical time-lapse series for FP-17 and -22, respectively. (b) Sucrose gra-
dient analysis of postnuclear supernatants obtained from detergent-lysed 
CV1 cells 16 h after transfection either with EGFP-17 or -22 (see Materials 
and methods). Aliquots of the fractions were analyzed by SDS-PAGE fol-
lowed by Western blotting for ribophorin I (Rb-I) or GFP, as indicated. The 
arrow and arrowhead indicate the position of cyt c and catalase, run on 
the gradients as size markers. P, pellet. Numbers on the left of the panels 
indicate position and M r  ( � 10  � 3 )of SDS-PAGE size markers.   
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titioning of FP - 22 ’ s positively mismatched TMD. For instance, 

ER subdomains differing in thickness could be generated by dif-

ferences in protein rather than in lipid composition ( Mitra et al., 

2004 ). Furthermore, simple geometrical considerations might 

explain the preferential partitioning of FP-22 ’ s TMD into ER 

tubules. One way of accommodating positive mismatch is by tilt-

ing of the TMD within the bilayer (for review see  de Planque and 

Killian, 2003 ); however, this arrangement results in suboptimal 

scanning calorimetry and fl uorescence measurements of lipid 

probes revealed that the extended b5 mutant (which, in vivo, is 

sorted to the plasma membrane;  Pedrazzini et al., 1996 ) partitions 

preferentially into domains enriched in acidic phospholipids or 

in ceramide and that the wild-type protein is partially excluded 

from these domains. 

 In addition to lipid composition, other physicochemical 

heterogeneities within the ER bilayer could contribute to the par-

 Figure 10.    FRAP analysis of FP-22 and VSVG 
at exit sites during a 10 ° C block.  (a and b) 
Bleaching of single ERES in cells doubly micro-
injected with Sec23-EYFP and VSVG-cerulean 
(a) or Cerulean-22 (b). 1.5  ×  1.5- μ m areas (in-
dicated by the squares in the second column) 
encompassing single ERES (recognized by the 
presence of Sec23-EYFP; a and b, middle), 
were bleached for cerulean with the 456-nm 
line of the argon laser, and recovery into the 
ERES of the cerulean-tagged constructs was 
imaged at the indicated times. Each column 
shows the same fi eld visualized for the indi-
cated protein as well as the merged image 
with the indicated pseudocolors. The arrows 
indicate the ERES that was bleached and fol-
lowed during recovery. Bar, 2  μ m. (c) recovery 
curves for VSVG (blue) or FP-22 (red) contain-
ing ERES. (d) Comparison of recovery curves 
for FP-22 in the ER and in ERES after bleaching 
of a 2.4- μ m strip (see Materials and methods). 
FP-22 recovers with a similar rate in ERES (red) 
and in the entire strip (gray). In c and d, val-
ues in the ordinate are FI normalized to the 
prebleach value (see Materials and methods). 
Shown are means of acquired data  ±  SEM 
( n  = 10).   

D
ow

nloaded from
 http://rup.silverchair.com

/jcb/article-pdf/181/1/105/1884136/jcb_200710093.pdf by guest on 20 M
arch 2024



JCB • VOLUME 181 • NUMBER 1 • 2008 116 

alization. Some of the images acquired by wide-fi eld microscopy were de-
convolved with the use of Huygens software (SVI; fi gure legends). 

 PFA-fi xed cells were processed for immunofl uorescence as previ-
ously described ( Bulbarelli et al., 2002 ), except for Sec23 immunostain-
ing. In the latter case, cells were permeabilized with 0.1% saponin in the 
presence of 50  μ g/ml RNase A, a treatment that reduced nonspecifi c nu-
clear staining. Immunostained preparations were mounted in Vectashield 
(Vector Laboratories) or Mowiol (Sigma-Aldrich). 

 Colocalization analysis.   To evaluate the extent of colocalization be-
tween expressed fl uorescent constructs and endogenous COPII (visualized 
by Sec23 staining of fi xed cells), two different methods were used. In the 
fi rst, the percentage of colocalization was quantifi ed by manual counting. 
First we applied a threshold to the Sec23 signal corresponding to seven 
times the mean FI of the entire cell, and the number of puncta within the 
size range of 4 – 50 pixels was quantifi ed with the ImageJ program (Nation 
Institutes of Health). We then examined each Sec23-positive structure in the 
FP channel and scored a positive count when we found an enrichment of 
the FP fl uorescent signal covering  > 50% of the thresholded pixels of Sec23. 
Differences between the percentage of COPII-positive structures containing 
FP-17 or -22 at 10 or 37 ° C were then evaluated by one-way analysis of 
variance, after transformation of the data to obtain a normal distribution, 
according to the equation p ’  = arcsin  √ p (where p is the observed percent-
age and p ’  is the transformed value). Diverging groups were identifi ed by 
Fischer ’ s protected least square difference analysis. 

 In the second method, the degree of colocalization between differ-
ent fl uorescent constructs and Sec23 was compared by image subtraction. 
Images were acquired with laser power and gain adjusted so as to obtain 
similar mean intensities in the Sec23 and FP channels, and then processed 
and analyzed with the ImageJ program. After excluding the nucleus and 
the Golgi area and after background subtraction, the mean intensities 
were equalized in the two channels by reducing the upper limit of the dis-
play range of the dimmer of the two images. Finally, the FP signal was sub-
tracted from that of Sec23, and the integrated FI of the subtracted image 
( Δ FI) was determined. Statistical signifi cance of the  Δ FI for the three groups 
of cells (expressing FP-17, FP-22, or VSVG) was assessed by the Kruskal-
Wallis nonparametric test followed by Dunn ’ s multiple comparison test. 

 To assess the degree of colocalization between FP-22 and VSVG at 
ERES, cells were doubly microinjected with Cerulean-22 and VSVG-YFP. 
After immunostaining the 10 ° C-blocked cells for Sec23, the same manual 
counting method was applied as described for singly microinjected cells. 

 To compare export of VSVG and FP-22 from the ER, cells coinjected 
with the cDNAs for VSVG-YFP and Cerluean-22 and blocked at 10 ° C were 
allowed to warm to 20 ° C in the on-stage incubator and imaged during 
warm-up. FI in the Cerulean and YFP channel was determined at ERES and 
in moving structures generated from there at 10-s time intervals, with the 
pinhole set at three times the value of the Airy disk. 

 Immunoelectron microscopy 
 Sample preparation.   12 h after transfection with Venus-17 or -22, HeLa 
cells were incubated at 10 ° C for 3 h. Glutaraldehyde and PFA were then 
added to the culture medium to fi nal concentrations of 0.1% and 2%, re-
spectively. Fixation was for 20 min at 10 ° C followed by 2 h at room tem-
perature. The cells were then processed according to standard procedures 
( Griffi ths et al., 1984 ). Cryosections were doubly labeled with rabbit poly-
clonal anti-GFP and sheep polyclonal anti-Sec16 antibodies, followed by 
secondary antibodies conjugated to 18- and 12-nm colloidal gold, respec-
tively. Immunolabeled sections were stained and embedded in a mixture of 
methylcellulose: saturated uranyl acetate (9:1;  Griffi ths et al., 1984 ). 

 Colocalization analysis.   The degree of localization of FPs to ERES on 
doubly immunodecorated cryosections was determined on images with a 
fi nal magnifi cation of 71,250 or 97,500. Only gold particles that fell 
within 20 nm of the ER membrane were taken into account. Membrane 
profi les were considered as ER if they were part of the nuclear envelope 
or of elongated tubular/cisternal structures (with a major diameter of at 
least 0.2  μ m) or if they were labeled by at least one 12-nm gold particle 
(Sec16). We considered as ERES portions of ER membrane within 60 nm 
of, and in continuity with, a 12-nm gold particle – labeled site. In some 
micrographs, the 12-nm gold particle fell in the ER lumen so that it was not 
possible to determine from which of the two opposing membranes the 
signal originated. Therefore, we always considered both of the two op-
posing membranes of the ER region surrounding a 12-nm gold particle 
( Fig. 4 f ). 

 Statistical analysis.   The immunoelectron microscopy data were ana-
lyzed with a test for randomness ( Mayhew et al., 2003 ), applied either to 
evaluate the specifi city of the immunolabeling procedure or modifi ed to 

interaction between the TMD and the acyl chains, which are 

roughly perpendicular to the plane of the membrane. In curved 

domains some of the phospholipid hydrocarbon chains may be 

slightly tilted with respect to the bilayer perpendicular, generat-

ing microdomains in which the difference between the orienta-

tion of the acyl chains and of the TMD is smaller. 

 In conclusion, our results illustrate how relatively small 

differences in partitioning behavior can result in effi cient sort-

ing of membrane proteins. Indeed segregation of FP-22 from 

FP-17 was only partial. FP-22 was recruited weakly to exit sites, 

freely exchanging between them and the surrounding ER, and 

FP-17 was not completely excluded from ERES. The latter ob-

servation is consistent with our previous fi nding ( Pedrazzini 

et al., 2000 ) that cyt b5 very slowly cycles between the ER and 

the Golgi. Thus, the difference in behavior of FP-17 and -22 in 

the early secretory pathway appears to be quantitative rather 

than qualitative, yet the cumulative effect of these quantitative 

differences is a qualitatively different fi nal distribution of the 

two proteins. The TMD-dependent sorting based on partitioning 

described here, although observed with simple model trans-

membrane protein reporters, may be relevant to the mechanism 

by which the TMD infl uences the fate of more complex mem-

brane proteins at the ER – Golgi boundary as well as at other 

sorting sites of the exo – endocytic pathway. 

 Materials and methods 
 Plasmids and antibodies 
 Constructs consisting of spectral variants of monomeric GFP linked at the 
C terminus to the TMD of cyt b5 (17 residues) or to an extended version 
thereof (22 residues) are called FP-17 and FP-22, respectively. Alterna-
tively, they are referred to with the name of the spectral FP variant followed 
by the TMD length ( Fig. 1 a ). These constructs were generated from the 
previously described GFP-17 and -22 pCDNA3 plasmids ( Bulbarelli et al., 
2002 ) by replacing the GFP coding sequence with a monomeric EGFP 
variant ( Snapp et al., 2003b ) or with monomeric versions of Venus (F223R; 
 Nagai et al., 2002 ) or Cerulean (A206K;  Rizzo et al., 2004 ). Versions of 
EGFP-17 and -22 lacking the myc epitope in the linker between the FP and 
the TMD ( � myc constructs;  Bulbarelli et al., 2002 ) were used in colocaliza-
tion experiments with myc-tagged Rtn4a. Other plasmids and antibodies 
used in this study are listed in Table S4 (available at http://www.jcb
.org/cgi/content/full/jcb.200710093/DC1). 

 Transfection, microinjection, and temperature block experiments 
 CV1 and HeLa cells were transiently transfected by the calcium phosphate 
method or with the Fugene 6 reagent (Roche) as previously described 
( Bulbarelli et al., 2002 ). Plasmids were microinjected into the nucleus of 
CV1 cells with a microinjector (Eppendorf 5200), applying a pressure of 
80 – 90 hPa. At the times indicated in the fi gure legends, microinjected cells 
were either imaged alive or fi xed in 4% PFA. For temperature block experi-
ments, cells were incubated in a refrigerated circulating water bath in 
Hepes- containing DME before fi xation or live cell imaging. 

 Fluorescence microscopy 
 Imaging of fl uorescent cells was performed with an MRC 1024 ES (Bio-Rad 
Laboratories) or an LSM 510 Meta confocal microscope (Carl Zeiss, Inc.), 
using 60 ×  (Nikon) or 63 ×  (Carl Zeiss, Inc.) Plan Apochromat lenses (1.4 NA), 
respectively. Unless otherwise specifi ed, single confocal sections are shown 
in the fi gures. In some experiments, we used a wide-fi eld microscope 
(Axiovert 200; Carl Zeiss, Inc.; 63 ×  Plan Apochromat lens) equipped with a 
charge-coupled device camera (MicroMAX 512 BFT; Princeton Instruments) 
and controlled by Metamorph software (Crisel Instruments). For live-cell 
imaging, cells were kept in an on-stage thermostated and humidifi ed 
CO 2  incubator. 

 In all cases, illustrations were prepared with Photoshop software 
(Adobe). Gamma adjustment was applied where required for easier visu-
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consider only the distribution of gold particles between ER and ERES 
(Tables S1 – 3).  �  2  values, calculated from the difference between observed 
and expected gold particles, were used to assess statistical signifi cance. 

 FRAP 
 FRAP was performed on microinjected cells expressing EGFP-17, EGFP-22, 
or VSVG-EGFP, with the use of a confocal microscope (LSM 510 Meta). 
To compare D values of the three proteins within the ER, bleaching was 
performed on cells incubated at 39.5 ° C for 75 min after the microinjec-
tion. Experiments aimed at analyzing the dynamics of the FPs at single exit 
sites were conducted at 10 ° C on 10 ° C-blocked cells. 

 Evaluation of diffusion coeffi cients at 39.5 ° C.   After two prebleach 
acquisitions, a 3.8- μ m-wide strip across the entire width of the cell was 
scanned 50 times with the 488-nm line of the Argon laser at 100% power 
with the pinhole wide open. Recovery in the photobleached area was then 
followed at 1-s intervals for 200 s with attenuated laser power and with 
open pinhole. D and M f  values were estimated as previously described 
( Snapp et al., 2003a ), applying the simulation method introduced by ( Siggia 
et al., 2000 ). 

 FRAP at single exit sites.   To identify ERES, cells were coinjected with 
a plasmid coding for Sec23-YFP together with the cDNA for the FP under 
investigation (VSVG-cerulean or Cerulean-22). A 1.5  ×  1.5- μ m area en-
compassing a single exit site was bleached with the 458-nm line of the 
Argon laser in the temperature-blocked cells, as described in the preceding 
paragraph, and recovery was followed with attenuated laser power in 
both the cerulean and the YFP channel with the pinhole set at a value of 
5 Airy disks. The size of the area and the pinhole opening were chosen to 
avoid problems associated with possible small movements of the ERES dur-
ing the experiment. In each image, recovery in the single ERES was com-
puted after defi ning its position by comparison with the Sec23-YFP marker. 
To compare diffusion of FP-22 in ERES with that in the rest of the ER, cells, 
microinjected and blocked at 10 ° C, were strip bleached as described in 
the preceding paragraph. Recovery was then analyzed both in the ERES 
within the strip (identifi ed by Sec23-YFP) and in the entire strip. 

 Sucrose density gradient velocity centrifugation 
 16 h after transfection with FP-17 or -22 cDNA, CV1 cells were lysed with 
detergent and analyzed by sucrose density gradient centrifugation as pre-
viously described ( Pedrazzini et al., 2000 ). 

 Online supplemental material 
 Fig. S1 illustrates the segregation between Venus-17 and Cerulean-22. 
Tables S1 and 2 show the detailed morphometric analysis of the antibody 
specifi city in Immunogold electron microscopy experiments. Table S3 reports 
the quantitative analysis of the distribution of FP-17 and -22 between ER 
and ERES by immunoelectron microscopy. Table S4 is a list of the plasmids 
and antibodies used in this study. Videos 1 and 2 show examples of FRAP ex-
periments for FP-17 and -22, respectively. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200710093/DC1. 
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