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ABSTRACT In this study, DNA-depleted nuclear protein matrices are isolated from HeLa S3
cells . These nuclear matrices consist of peripheral laminae, residual nucleoli, and internal
fibrillar structures . High molecular weight, heterogeneous nuclear RNA (hnRNA) is quantita-
tively associated with these structures and can be released intact only by affecting the integrity
of the matrices . It is, therefore, concluded that hnRNA is part of a highly organized nuclear
structure.
By irradiation of intact cells or isolated nuclear matrices with ultraviolet light, proteins tightly

associated with hnRNA can be induced to cross-link with the RNA . Performing the cross-
linking in vivo is an extra guarantee that only hnRNA-protein (hnRNP) complexes existing in
the intact cell are covalently linked . Such hnRNP complexes were isolated and purified under
conditions that completely dissociate nonspecific RNA-protein complexes .

By comparison of the hnRNP found in nuclear matrices and the published data on the
composition of hnRNP particles, it was found that the so-called hnRNP "packaging" proteins
(32,000-38,000 mol wt) were not efficiently cross-linked to hnRNA by UV irradiation . They
were, however, present in the matrix preparations, bound to hnRNA, because they were
released from nuclear matrices after ribonuclease treatment of these structures . On the other
hand, two major hnRNPs (41,500 and 43,000 mol wt) were efficiently cross-linked to hnRNA.
These proteins were not released by ribonuclease treatment, which suggests that they are
involved in the binding of hnRNA to the nuclear matrix .

Althoughin the last decademuch knowledgehas been acquired
about hnRNA at the molecular level, little is known about the
role ofvarious cellular structures and components in transcrip-
tion, RNA processing, and RNA transport to the cytoplasm.
To investigate such a role, studies have been undertaken to
identify protein and RNA molecules that interact with heter-
ogeneous nuclear RNA (hnRNA) . hnRNA can be extracted
from nuclei in the form ofhnRNA-protein (hnRNP) particles
(reviewed by Heinrich et al . [1] and Van Venrooij and Janssen
[2]) that have a repeating subunit structure composed of 200-
300A spherical particles connected by a ribonuclease-sensitive
strand (3, 4) . Small nuclear RNA seem to be integral parts of
hnRNP particles (5-8) . The protein composition of hnRNP
particles is very complex and seems to be related to the isolation
procedure used. Although nonspecific binding of proteins to
the RNA during the isolation of the particles has never rigor-
ously been excluded,most workers (9-11) agree on the presence
of some predominant proteins in the 30,000-44,000 mol wt
range .
The isolation of hnRNP particles mostly involves nuclear

breakage (for example, by sonication) or extraction of the
nuclei with buffer solutions for prolonged periods at a relatively

high temperature . In general, the amount of hnRNP released
from the nuclei seems to depend very much on the degree of
nuclear disintegration achieved (2) .

Detergent-treated nuclei from eukaryotic cells, depleted of
their DNA, retain a residual insoluble protein structure referred
to as nuclear skeleton or nuclear matrix (12-20) . This nuclear
matrix consists of (a) a peripheral layer ofa complex ofnuclear
pores and connecting lamina, (b) residual nucleolar structures,
(c) internal fibrillar protein structures. The peripheral pore-
lamina complexes have been purified (21-23) and shown to
contain three major polypeptides in the 60,000-70,000 mol wt
range (21) . These proteins are located at the periphery ofnuclei
in interphase cells (as shown by immunofluorescence) and not
in the internal nuclear structures (24, 25). Very little is known
about the protein composition ofthe internal nuclear structure .
It is evident, however, that it is much more complex than the
composition of the pore-lamina complexes (14-16, 26). Some
of the matrix proteins could be involved in the binding of
hnRNA, because two groups of investigators have reported
that in a variety of cells the hnRNA is quantitatively associated
with the nuclear matrix (13, 17, 18, 26). Herman and co-
workers (17) showed with electron microscope radioautography
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that in HeLa cell nuclei the hnRNA was associated with the
internal protein structure . These authors suggested that
hnRNA is essential for the integrity of the nuclear matrix . This
conclusion, however, was not supported by the results of Pogo
and collaborators who found that in liver cells, Krebs ascites
cells, and erythroleukemic cells the hnRNA is associated with
the nuclear matrix (18, 26) but that ribonuclease treatment
removes the hnRNA without disintegration of the internal
structure (26) . Furthermore, Herlan and co-workers (19)
showed that also pre-rRNA and rRNA are almost quantita-
tively attached to the nuclear skeletons of Tetrahymena ma-
cronuclei. Because Long et al . (26) noticed that hnRNA can be
released from the internal protein matrix only by disrupting
these structures, it is very well possible that hnRNP particles,
as discussed above, are products of nuclear disintegration
caused by mechanical forces or enzymatic action.

In this study, the isolation and characterization of nuclear
matrices of HeLa S3 cells are described . In an attempt to
establish which proteins are involved in the association of
hnRNA with the nuclear matrix, isolated matrices and intact
cells were subjected to UV irradiation to cross-link hnRNA to
some of its associated proteins . Evidence is presented that the
same set ofproteins was cross-linked to hnRNA irrespective of
whether the cross-linking was performed on intact cells or on
isolated matrices . Our results suggest that the major cross-
linked proteins are involved in the binding of hnRNA to the
nuclear matrix.

MATERIALS AND METHODS
Tissue culture media and sera were purchased from Flow Laboratories Ltd.,
Irvine, Scotland . All chemicalsused wereof analytical grade. Buffers were boiled
in the presence of0.02% diethylpyrocarbonate and then autoclaved. Radiochem-
icals were obtained from the Radiochemical Centre, Amersham, England.

Cell Growth and Labeling
HeLa S3 cells were grown in suspension at 37°C at densities ranging between

0.5 and 1 x 108 cells/ml on Eagle's Minimal Essential Medium supplemented
with 5% newborn calf serum, 5% fetal calf serum, and vitamins. Mycoplasma
tests were tun regularly and were always negative . Cell doubling occurred every
24 h. For preferential labeling ofImRNA, cells were concentrated l0-fold (5-10
x 108 cells/ml) and incubated with 5 ACi/rnl [5,6-3H]uridine (40 Ci/mmol) for
10 min. Cellular protein was labeled by incubating the cells overnight with 2
pCi/ml [36S]methionine (t 1,000 Ci/mmol) at densities of1-2 x 108cells/ml . For
the first 2 h, the cells were incubated in medium without unlabeled methionme,
then 0.1 Vol of complete medium was added. Another volume of complete
medium was added 1 h before harvesting the cells .

Cell Fractionation and Purification of
Nuclear Matrices

Cells were harvested on frozen NKM (130 mM NaCl, 5 mM KCI, 7.5 mM
MgCL), pelleted by centrifugation (5 min at 800 g), washed once with NKM
solution, and pelleted again. The cell pellet was suspended in cold reticulocyte
suspension buffer (RSB) (0.01 MNaCl, 0.01 MTris [pH 7.4], 1.5 HIM MgC12, 0.5
mM PMSC [phenylmethylsulfonyl chloride]) and after addition of 0.5% Na-
deoxycholate (DOC) and 1% Tween 40 (Atlas Powder Co ., Wilmington, Del.)
homogenized by 20 strokes ofa motor-driven Teflon pestle in a Potter-Elvehjem
tissue homogenizer (Kontes Co., Vineland, N. J.) . The nuclei were pelleted (5
min at 800 g) and washed once with RSB. The nuclear pellet was resuspended in
HRSB (0 .11 M NaCl, 0.01 MTris pH 7.4, 0.01 MMgC6 0.5 mM PMSC) at a
density of 1 x 108 nuclei/ml and incubated with 500 pg/ml DNase 1 for 15 min
at 20°C. 0.5-1 .0 nil of the digest was transferred to a tube filled with 2 nil of 2.6
Msucrose (underlayer) and 10 ml of 1 M sucrose in HRSB and centrifuged for
15 min at 1,000 g at 4°C. The DNA-depleted nuclei, concentrated on the heavy
sucrose layer, were gently resuspended in 5 nil of 0.4 M(NIL)2S04, 30 mM Tris
(pH 7.4), 10 mM MgCL, spun down (5 min at 800 g), and resuspended in RSB.
Suspensions of the high-salt-extracted nuclear matrices obtained in this way were

used for UV-induced cross-linking experiments and for hnRNA and ImRNP
complex isolation .

Before use, DNase 1 (Worthington Biochemical Corp ., Freehold, N. J.; DPFF
quality, "RNase free") was freed from contaminating traces of RNaseactivity by
affinity chromatography over 5'-UTP-agarose (Sigma Chemical Co., St. Louis,
Mo .) as described by Smith et al . (27). DNase 1 was tested for ribonuclease
activity by incubating 311-labeled 28S rRNA for 1 h at 37°C with 50 fig/nil
DNase 1 . The purified DNase 1 used in all our experiments did not degrade 28S,
rRNA when tested in this way.

UV-light-induced Cross-linking
UV-induced RNA-protein (RNP) cross-linking was performed on nuclear

matrices suspended in RSB or on intact cells suspended in NKM buffer at
concentrations of 108 matrices or cells/ml, following the procedure of Wagen-
makers et al. (28). Samples to be irradiated were transferred into small quartz
tubes, which were put into a bigger quartz tube filled with ice water. During
irradiation the cells or matrices were gently shaken every 3 min. Irradiation was
performed in a wooden box covered on the inside with aluminum foil. On each
of the four edges of the box, one 15-W germicidal tube (Philips TUV) was fixed .
The distance between sample and lamps was -4 cm . 70% of the irradiation
energy was emitted at 253.7 nm . The radiation dose at this wavelength received
by the sample was determined by ferrioxalate actmometry (29) and found to be
8,000 J/mx (10 quanta/m) per minute.

Theamount ofRNPcross-linkingwas determined by SDS-phenol/chloroform
extraction (30, 31). This extraction procedure separates RNA from RNP com-
plexes because free RNA remains in the aqueous phase, while covalent RNP
complexes and free protein move into the interphase. Irradiated nuclear matrices
or nuclear matrices from irradiated cells containing 311-labeled hnRNA were
boiled in 1% SDS for 2 min and centrifuged for 5 min at 5,000 g, and a phenol/
chloroform extraction was performed on the clear supernate . The organic phase
plus the interphase were re-extracted twice with a buffer containing 0.5% SDS,
50 mM Tris (pH 7.4), 100 mM NaCl, and 5 mM EDTA . Aliquots from the
combined aqueous fractions and the organic phase plus interphase were mixed
with Picofluor-15 (Packard Instrument Co ., Downers Grove, IB.) and counted.
When, after repeated washings with SDS-containing buffer, the organic phase
and interphase were diluted with ethanol and the pellets obtained after centrifu-
gation were treated with proteinase K(100 pg/ml, 1 h, 37°C) and re-extracted
with phenol/chloroform, then hnRNA was quantitatively present in the water
phase. This indicates that the presence of RNA radioactivity in the combined
organic and interphase indeed was attributable to complexing with protein .
Neither irradiation up to 10 min nor subsequent proteinase K treatment caused
significant degradation of the hnRNA, as judged from RNA sedimentation
profiles in glycerol gradients.

Isolation of Covalent RNP Complexes
Adiscontinuous sucrose-Dz0-1120 gradient was used for the rapid and easy

isolation ofcovalent RNPcomplexes.The gradient consisted ofa 1-ml underlayer
of 80% sucrose in D20 (density 1.35 g/cm) and on top of this a layer of 3.5 ml
of 1 .25 Msucrose in a D20/1120 mixture (density 1.20 g/cm') containing 10 mM
Tris (pH 7.4) and 0. l% SDS. 0.5-ml samples containing 1% SDS were layered on
these gradients and centrifuged for 18 h at room temperature at 240,000 g in a
Beckman SW50.1 rotor (Beckman Instruments, Inc., Spinco Div., Palo Alto,
Calif.) . The middle layerhasa density that prevents free proteinfromsedimenting
into the gradient, while the underlayer prevents the RNP complexes (densities
between 1.2 and 1 .35 g/cm) from pelleting. In this way, free protein could be
separated from protein covalently linked to RNA. To avoid contamination of the
lower fractions with the bulk of the radioactivity present in the top fractions, the
gradients were fractionated starting from the bottom. In a control experiment
(not shown), it was found that when nuclear extracts from irradiated or unirra-
diated cells were analyzed on this type of gradient, >70% of the [311]uridine-
labeled ImRNA could be recovered from the high-density region of the gradient
after an 18-h run as described above.

Analysis of Proteins
Samples for SDS polyacrylamide gel electrophoresiswere prepared as follows.

In the case of proteins covalently bound to RNA, the RNAmoiety was digested
by a 1-h incubation at 37°C with 400 U/mlmicrococcal nuclease (P-L Biochem-
icals, Inc., Milwaukee, Wis.) and 25 jig/ml RNase A(Sigma ChemicalCo .) in 10
mM Tris (pH 7.4) containing 1 mM Ca". This procedure degrades >99.9% of
[3H]RNA bound to protein, irrespective of the 311-nucleoside precursor used.
Free protein was precipitated with 7% TCA. The precipitations were pelleted,
washed twicewith acetone, and dissolved in sample buffer (2% SDS, 10%glycerol,
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and 596,8-mercaptoethanol) . SDS polyacrylamide gel electrophoresis was per-
formed essentially as described by Laemmh (32).

Electron Microscopy
Suspensions of nuclei or nuclear matrices were fixed overnight in 0.590

glutaraldehyde, 0.1 M Na-cacodylate (pH 7.4), washed overnightat 4'C with0.1
M Na-cacodylate buffer, and then postfixed in 2090 osmium tetroxide in 0.1 M
Palade buffer for 1 h. Samples were stained for 2 h in 0.596 uranyl acetate in 0.1
M Palade buffer, dehydrated with ethanol followed by propylene oxide, and
finally embedded in Epon. Sections were further stained for 30 min with 3.3%
uranyl acetate and for an additional 15 min with 1.396 lead citrate. Examination
was performed in a Philips EM 301.

RESULTS
Isolation and Characterization of Hela
Nuclear Matrices
Mechanical homogenization of HeLa cells in a DOC/Tween

mixture followed by a wash with RSB (see Materials and
Methods) results in a nuclear preparation that is essentially
free of cytoplasmic contamination as judged by electron mi-
croscopy. The double membrane of the nuclei is solubilized by
the detergent treatment, and most of the soluble nuclear mol-
ecules are removed . Nonsolubilized remnants ofthe membrane
structures and the pore-lamina complex together form a dark-
staining peripheral nuclear layer. Inside the nuclei the presence
of nucleoli is obvious, whereas the chromatin seems to be
rather randomly distributed as a result of the low-salt treat-
ment. From these nuclei, nuclear matrices as shown in Fig. 1 A
could be prepared, following a procedure in which the DNA
is digested and gently extracted (see Materials and Methods) .
Although almost all DNA and associated proteins were

removed by the digestion and subsequent extraction procedures
(Fig . 2), an extensive internal nuclear structure can still be seen
in the matrices . This internal structure consists of residual
nucleoli and fibrillar structures. It was striking that, although
>99% of the DNA was removed from the matrices, generally
-80% ofthe hnRNA cosediments with intact matrices (Fig. 2).
These results are in agreement with those ofHerman et al. (17)
and Miller et al . (18) . It should be noted here that most of the
RNA released from the nuclei during both extraction steps
(Fig. 2) could be pelleted from the nuclear extracts by low-
speed centrifugation, which suggests that it was bound to very
large structures, most probably fragments of nuclear matrices
disrupted during the extraction . When the matrices subse-
quently were treated with RNase A, most though not all of the
hnRNA could be removed from these structures. Electron
microscope observation then showed that the RNase-treated
matrices had a morphological appearance very similar to that
of the nontreated matrices (Fig. 1 B) . This is not surprising, as
RNP complexes proved to be only a minor component of
nuclear matrices (see below) . Consequently, it must be con-
cluded that in HeLa cells hnRNA seems not to be essential for
the integrity of the nuclear matrix structures . Our results,
therefore, corroborate those of Miller et al. (18), who con-
cluded, also on the basis of electron microscope observation of
RNase-treated matrices, that in liver cells the internal nuclear
structure does not depend on RNA for its integrity .

Characterization of the hnRNA Associated with
the Nuclear Matrices
Rapidly labeled haRNA isolated from the nuclear matrices

and analyzed on glycerol gradients as described in the legend
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of Fig . 3 was found to be degraded when commercially avail-
able "RNase-free" DNase 1 was used. Purification of the
DNase over a 5'-UTP-agarose column (27), however, removed
the contaminating ribonuclease in a simple one-step procedure .
From matrices prepared with the purified DNase 1, high
molecular weight, rapidly labeled hnRNA could be prepared .
The sedimentation profile of matrix-bound hnRNA, after de-
naturation, was compared with that of hnRNA isolated from
whole nuclei (Fig . 3) . Because the sedimentation profiles are
almost identical, it can be concluded that nuclear matrices,
prepared as described in Materials and Methods, contain most

FIGURE 1

	

(A) Electron micrograph of a HeLa cell nuclear matrix .
Nuclear matrices were prepared from HeLa cell nuclei after com-
plete removal of the chromatin by DNase l digestion and subse-
quent extraction of the digested material (see Materials and Meth-
ods) . (8) As in A but after isolation nuclear matrices were treated
with RNase A (100 fig/ml, 20 min, 25°C) . Bars, 1 Am . A, x 11,000; 8,
x 11,500 .

D
ow

nloaded from
 http://rup.silverchair.com

/jcb/article-pdf/88/3/554/1637950/554.pdf by guest on 13 M
arch 2024



of the high molecular weight hnRNA chains in an apparently
undegraded form .

UV Cross-linking of hnRNA to
Associated Proteins
To study the interaction of hnRNA with nuclear matrix

proteins, UV irradiation was used to induce cross-linking be-
tween RNA and protein (30, 31, 33). To be sure that the in
vivo situation was being studied, we irradiated not only isolated
matrices but also intact cells.

First, the UV dose necessary for adequate cross-linking was
determined. Forthis purpose cells andnuclear matrices, labeled
with [3H]uridine in their hnRNA, were irradiated for various
periods of time, and the amount of cross-linked hnRNA was
determined by SDS-phenol/chloroform extraction (see Mate-
rials and Methods) . After 5 min of irradiation of cells (Fig.
4A), as well as of isolated nuclear matrices (Fig. 4B), most of
the hnRNA had already been cross-linked to protein . Irradia-
tion ofthe isolated matrices for >5 min resulted in considerable
losses of cross-linked RNA that became insoluble even in 1%
SDS at 100°C (Fig . 4B) . On the other hand, when intact cells
were irradiated for longer periods oftime no significant portion
ofthe hnRNA was present in the insoluble material (Fig. 4A) .
However, as it is known that prolonged irradiation tends to
induce protein-protein cross-linking (34; and our own obser-
vations), in our further experiments an irradiation time of only
3 min was used. This is equivalent to a radiation energy at
253 .7 nm of 2.4 x 104 J/m 2 (28) and is sufficient to cross-link
50-80% of the hnRNA to proteins .

Isolation of Cross-linked hnRNP Complexes
Two types ofdensity gradients were used to separate hnRNA

and free protein from cross-linked hnRNP complexes . In our
first experiments, CsCl density gradients were used. Nonirra-
diated and irradiated matrices containing 'S-labeled protein
and 3H-labeled hnRNA were treated with 1% Sarkosyl at
100°C, and the soluble fraction was centrifuged to equilibrium

RNA 87% 80%

	

16%
DNA 97% <l%

	

<l%

FIGURE 2

	

Analysis of HeLa nuclear strítctures after various enzy-
matic treatments . HeLa cell nuclei, prepared as described in Mate-
rials and Methods, were incubated with DNase 1 (500 lag/ml, 15
min, 20°C) and RNase A (10ILg/ml, 15 min, 20°C) as indicated . The
digested material was removed by a two-step extraction procedure .
The first extraction was carried out by layering the digest on 1 M
sucrose in HRSB buffer and subsequent centrifugation for 15 min at
800 g . The pellet of extracted nuclei was then resuspended in 0.4 M
(NH4)2SO4 buffer and pelleted again . DNA was labeled by incubat-
ing the cells overnight at a density of 108 cells/ml in the presence
of 0 .5 hCi/ml [' 4 C]thymidine (57 mCi/mmol) . Then the hnRNA was
labeled by concentrating the cells 10-fold and incubating them in
the presence of 5 ILCi/ml [5,6-3 1]uridine for 10 min at 37°C . The
figures given represent percentages of the total acid-precipitable
radioactivity initially present in the nuclei .

in CsCl-Sarkosyl gradients . Most of the hnRNA in the nonir-
radiated sample equilibrated at a buoyant density >1 .6 g/cm3.
The buoyant density of the hnRNA from irradiated matrices
was shifted to 1.38-1.48 g/cm3 . The most likely explanation
for this finding is that protein was cross-linked to the hnRNA,
because 36S-protein label of irradiated matrices also showed a
peak in the same density region (data not shown) .

In more recent experiments, a sucrose-D20-H20 gradient
was used to isolate cross-linked hnRNP complexes . The gra-
dient conditions employed in these experiments were such that
>70% of the (cross-linked) hnRNA was found in the high-
density region of the gradient when extracts of irradiated or
nonirradiated cells were analyzed (see Materials and Methods).
The method thus allows a reasonable yield of cross-linked
hnRNP complexes in a simple and convenient manner . Cells
labeled with [36S]methionine were irradiated for 3 min (in vivo)
before preparation of the nuclear matrices . These were ex-
tracted with 1% SDS at 100°C, and the soluble fraction con-
taining -90% of the hnRNA was loaded onto a sucrose-D20-
H20 density gradient (Fig . 5 B) . The same procedure was
applied to unirradiated cells (Fig. 5A) and irradiated (in vitro)
isolated nuclear matrices (Fig . 5 C) . The results show that when
no UV irradiation was employed, an insignificant fraction of
the total matrix protein (<O.1%) migrated into the high-density
region of the gradient (Fig. 5A) . Only in the samples from
irradiated material did labeled protein appear in that part of
the gradient with densities >1.20 g/cm3 (fractions 1-8). Gen-
erally, 1 .0-1 .5% (irradiated cells, Fig . 5 B) or 2.5-4.0% (irradi-
ated matrices, Fig. 5 C) of the total nuclear matrix protein was
found in the high-density region of the gradient . It is most
likely that we are dealing here with covalent RNP complexes,
because these complexes are ribonuclease sensitive. When ma-
trices from irradiated cells were treated with RNase A before
the extraction with SDS, also <0.1% ofthe total matrix protein
label migrated into the high-density region ofthe gradient (Fig.

FIGURE 3

	

Glycerol gradient analysis of hnRNA isolated from HeLa
nuclei and HeLa nuclear matrices (skeletons) . [3H]hnRNA was iso-
lated from purified nuclei or from nuclear matrices by hot phenol
extraction at 55°C, as described by Long et al . (26), and subsequently
precipitated by the addition of ethanol . The RNA pellets were
dissolved in a small volume of water, denatured at 63°C in 25%
dimethyl sulfoxide, 50% dimethylformamide, 10 mM EDTA, and
0.2% SDS for 2 min as described by Dubroff and Nemer (45), and
applied to 10-41% isokinetic glycerol gradients containing 10 mM
Tris, pH 7.4, and 0.1% SDS. Centrifugation was for 3 h in a Beckman
SW50.1 rotor (Beckman Instrument Co .) at 300,000 g at 20°C . 0,
Nuclei ; O, nuclear matrices .
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5 D). In subsequent experiments, the high-density RNP com-
plexes were further purified by oligothymidylic acid [oligo-
(dT)jcellulose chromatography in the presence of SDS .

Oligo(dT) -Cellulose Chromatography of
Covalent hnRNP Complexes
Because we were interested to know which proteins were

cross-linked to hnRNA, ["Slmethionine-labeled covalent
hnRNP complexes obtained via sucrose-D20-H20 gradients
were further fractionated on oligo(dT)-cellulose as described
by Aviv and Leder (35) for mRNA. This procedure implies the
presence of SDS and 0.5 M NaCl in the binding buffer before
elution with a low-salt buffer. When total unfractionated SDS
extracts from unirradiated nuclear matrices were applied to
oligo(dT)-cellulose columns, no detectable 35S-labeled proteins
could be eluted with the low-salt buffer, indicating that chro-
matography in the presence of SDS minimizes nonspecific
binding of proteins to the column material. On the other hand,
when the pooled 36S-labeled covalent hnRNP complexes from
the sucrose-D20-H20 gradients were applied (fractions 1-8 of
Fig. 5 B and C), -16-23% of the protein label was found and
subsequently eluted from the columns. The binding of these
labeled proteins was completely RNase sensitive . When re-
chromatography (again in the presence of SDS) was done,
>90% of the labeled proteins were re-bound to the oligo(dT)-
cellulose and could be re-eluted with the low-salt buffer . These
results clearly indicate that - 16-23% of the proteins were
indeed covalently linked to poly(A)+hnRNA. It is interesting

100 -
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to note here that we found that generally 17-25% of the rapidly
labeled hnRNA associated with nuclear matrices was poly-
adenylated . Consequently, it can be assumed that the non-
bound fraction of the protein was cross-linked to
poly(A)-hnRNA rather than to rRNA or pre-rRNA . This
assumption could be substantiated by glycerol gradient analysis
of the cross-linked RNA. From cells, labeled with [3H]uridine
for 3 h and subsequently irradiated for 3 min, nuclear matrices
were prepared. Cross-linked RNA was isolated from the phenol
layer plus interphase fraction (see Materials and Methods),
treated with proteinase K, denatured, and analyzed on glycerol
gradients as described in the legend of Fig . 3 . The results
showed that the RNA components of both poly(A)+ and
poly(A)-RNP complexes were heterogeneous in size and not
ofribosomal nature . The possibility that the poly(A)-hnRNA
complexes could be derived from poly(A)-containing com-
plexes as a result of RNA-chain breakage during the boiling of
the matrices in SDS cannot totally be excluded . However,
when hnRNA was prepared from matrices by use of the
standard procedure ofphenol extraction at 55'C (thus omitting
the boiling in SDS), a similar percentage ofpoly(A)-containing
hnRNA (^-20%) was found, indicating that boiling in SDS
does not generate significant amounts of poly(A)-RNA .

Analysis of Matrix-associated hnRNP Complexes
The proteins associated with hnRNA in the nucleus have

been identified only after isolation of hnRNP particles from
disrupted nuclei under conditions that did not always exclude

100
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Irradiation time (min)

FIGURE 4

	

Quantitation of hnRNA cross-linking as a function of irradiation time . Labeling of HeLa cells and preparation of nuclear
matrices was performed as described in Materials and Methods . In the type of experiment depicted in A, intact cells were irradiated
for various periods of time . From these irradiated cells, nuclear matrices were prepared and analyzed . In a second type of
experiment, nuclear matrices were isolated and subsequently irradiated (e) . The nuclear matrices were boiled in 1% SDS for 2 min
and centrifuged for 5 min at 5,000 g, and the radioactivity in the pellet, referred to as SIDS-insoluble material, was measured . A
phenol/chloroform extraction (see Materials and Methods) was performed on the supernate to fractionate the hnRNA into a
cross-linked (organic phase plus interphase) and a non-cross-linked fraction (water phase) . O, Percentage of [3H]hnRNA present
in organic phase' plus interphase; ", percentage of [ 3H]hnRNA found in SIDS-insoluble material ; A, percentage of [ 3H]hnRNA
present in aqueous phase .
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the possibility of nonspecific binding of proteins to exposed
regions of RNA during the isolation procedure . As a conse-
quence, data on the number of proteins present in hnRNP
particles vary considerably (1, 2), although the presence of a
group of low molecular weight polypeptides (32,000-44,000
mol wt) as the main proteins of hnRNP particles has been
generally accepted now.

It is of interest to know which of these hnRNPs are involved
in the binding of hnRNA to the nuclear matrix. Considering
the fact that ribonuclease digestion does not disrupt the nuclear
matrix structure (see above), it can be expected that the pro-
tein(s) associated with hnRNA but not involved in the binding
of hnRNA to the matrix will be released during ribonuclease
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Analysis of unirradiated and irradiated nuclear matrices
on discontinuous sucrose-D 20-H20 gradients . Cells were labeled
overnight with [ 35S]methionine as described in Materials and Meth-
ods . One portion of the cells was irradiated for 3 min, and then
nuclear matrices were prepared . From a second portion of cells,
nuclear matrices were prepared and then irradiated for 3 min . From
the third (control) portion of cells, unirradiated nuclear matrices
were prepared . The nuclear matrix preparations were extracted with
1% SDS for 2 min at 100°C, and the cleared extracts were layered
onto sucrose-D20-H20 gradients prepared as described in Materials
and Methods . Centrifugation was carried out for 18 h at 240,000 g
in a Beckman SW50 .1 rotor at 20 ° C . (A) 1% SDS extract of nuclear
matrices from control, unirradiated cells . (B) 1% SDS extract of
nuclear matrices from cells irradiated for 3 min (in vivo cross-
linking) . (C) 1% SDS extract of nuclear matrices irradiated for 3 min
after isolation of the matrices (in vitro cross-linking) . (D) As for B,
but after isolation of the nuclear matrices from the irradiated cells,
these were incubated with RNase A (100 ug/ml) for 20 min at 37°C .

treatment. In such experiments, matrices were prepared from
cells labeled with [35S)methionine and incubated with and
without RNase A at 37°C (see legend of Fig . 6). Although
>80% of the hnRNA was released from the matrices by the
ribonuclease treatment (cf. Fig. 2), only 1-2% of the total "S-
labeled proteins were released from the nuclear matrices, in-
dicating that hnRNA-associated proteins are only a very minor
fraction of the total matrix protein. Therefore, the protein
patterns of matrices before and after incubation look very
similar (Fig. 6, lanes 2 and 3) . Nevertheless, some prominent
polypeptides were released from the matrices as a result of the
ribonuclease treatment . A number of them were found in the
33,000-38,000 mol wt range and probably are identical (at least
in mobility on SDS gels) with some of the main hnRNP
subparticle proteins (10) .

In attempts to determine which matrix protein(s) are in-
volved in the binding of hnRNA, we irradiated [ 35 S]methio-
nine-labeled cells with UV light to cross-link hnRNA in vivo
to proteins tightly associated with it . Nuclear matrices from

FIGURE 6 Analysis of proteins released from nuclear matrices by
RNase A . HeLa cells were labeled with [35S]methionine and nuclear
matrices were prepared as described in Materials and Methods. One
half of the matrix preparation was incubated with RNase A (100í+g/
ml, 20 min, 37°C) in 1 ml RSB buffer ; the other half was incubated
in 1 ml of RSB buffer only . After the incubation, the nuclear matrix
suspensions were centrifugated (5 min at 5,000 g) . The pellets,
containing the residual nuclear matrix proteins, and the supernates,
containing the proteins released during the incubation, were pre-
pared for SDS gel electrophoresis as described in Materials and
Methods . The figure shows a fluorograph of a 10-18% gradient gel .
Lane 1, molecular weight marker proteins; lane 2, nuclear matrix
proteins from control-incubated matrices ; lane 3, nuclear matrix
proteins from RNase A-incubated matrices; lane 4, proteins released
during the incubation of nuclear matrices with RNase A; lane 5,
proteins released during the control incubation of HeLa nuclear
matrices .
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these cells were dissolved by boiling in 1% SDS and cross-
linked poly(A)+ and poly(A)-hnRNP complexes were puri-
fied as described above. The cross-linked hnRNP complexes
were extensively treated with a mixture of RNase A and
micrococcal nuclease before analysis of the proteins on SDS
polyacrylamide slab gels was carried out. Fig. 7 shows a
fluorogram ofsuch an analysis. No hnRNA-associated proteins
could be isolated from nonirradiated cells or matrices (Fig. 7,
lanes 2 and 3). From irradiated matrices or from matrices of
irradiated cells, a typical pattern ofhnRNA-associated proteins
was obtained (Fig. 7, lanes 4-7), which proteins are a subset of
the matrix proteins (cf. Fig. 6, lane 2, and Fig. 7, lane 8). It is
evident that the patterns of proteins cross-linked to
poly(A)+hnRNA (Fig . 7, lanes 4 and .S) and poly(A)-hnRNA
(Fig. 7, lanes 6 and 7) are strikingly similar. In both cases, the
major cross-linked polypeptide has a molecular weight of
42,000 . In other experiments, in which a different type of
acrylamide gel was used, this major cross-linked protein was

separated into two polypeptides of41,500 and 43,000 mol wt,
respectively (Fig. 8, lane 1) .
These results were confirmed by another type ofexperiment .

Covalent RNP complexes, labeled in the RNA moiety by
incubating the cells for 15 min in medium supplemented with
[9H]adenosine, [3H]uridine, and [9H]cytidine (see legend to Fig.
7) before harvesting and UV irradiation, were isolated as
described above for [35S]methionine-labeled complexes.
Poly(A)-containing hnRNP complexes were purified by
oligo(dT)-cellulose chromatography and treated exhaustively
with a mixture of RNase A and micrococcal nuclease. When
the oligo(dT)-cellulose eluate from nonirradiated cells was
digested, no TCA-precipitable radioactivity was obtained .
After irradiation, however, 0.05% of the RNA label originally
present could be precipitated by TCA by virtue of its covalent
binding to protein. Knowing that 50-80% of the hnRNA was
cross-linked to protein and assuming the average length of an
RNA strand to be

	

2,500 nucleotides, this means that one to

FIGURE 7

	

Analysis of proteins cross-linked to poly(A)+ and poly(A)-hnRNA by UV irradiation . HeLa cells were labeled overnight
with ["S]methionine as described in Materials and Methods. One part of the cells was irradiated for 3 min, and from these
irradiated cells nuclear matrices were prepared . From a second portion of cells, nuclear matrices were prepared and then irradiated .
From a third portion of cells, unirradiated matrices were isolated . The three batches of nuclear matrices were extracted with 1%
SIDS (2 min, 100°C), and the soluble fractions were applied to discontinuous sucrose-D20-H20 gradients. To the fractions
containing the cross-linked hnRNA-protein complexes (corresponding to the fractions 1-8 of Figs . 5A-C, NaCl was added to a
final concentration of 0.5 M. Via oligo(dT)-cellulose chromatography (35), the cross-linked material was fractionated into poly(A)+
and poly(A)-hnRNP. The latter fraction was dialyzed overnight against 10 mM Tris, pH 7.4 . The dialysed poly(A)-hnRNP fraction
and the low-salt oligo(dT)-cellulose eluate, containing poly(A)+hnRNP, were treated with RNase A (25 Wg/ml) and micrococcal
nuclease (400 U/ml) in the presence of 1 mM Ca2* for 1 h at 37°C . After the nuclease digestion, the proteins in the samples were
precipitated with 7% TCA, washed twice with acetone, dissolved in sample buffer, and subjected to polyacrylamide gel
electrophoresis. In a similar type of experiment, HeLa cells (2 x 10 8 cells/ml) were labeled for 15 min with [3H]adenosine,
[3H]uridine, and [3H]cytidine (each 2 ILCi/ml), then harvested and irradiated for 3 min. Poly(A)-containing hnRNA-protein
complexes were isolated and digested with nucleases as described above for the ["S]meth ioníne-labeled complexes. The proteins
in the samples were then prepared for SIDS polyacrylamide gel analysis and fluorography . The figure shows a fluorograph of 10%
polyacrylamide gels . Lane 1, molecular weight marker proteins (for lanes 2-8) ; lane 2, proteins covalently associated with
poly(A)-hnRNA from unirradiated cells; lane 3, proteins covalently associated with poly(A)+hnRNA from unirradiated cells; lane
4, proteins cross-finked to poly(A)+hnRNA from cells irradiated with UV light for 3 min; lane 5, proteins cross-linked to
poly(A)+hnRNA from matrices irradiated with UV light for 3 min; lane 6, as lane 5, but poly(A)-hnRNA; lane 7, as lane 4, but
poly(A)-hnRNA; lane 8, total nuclear matrix protein ; lane 9, proteins covalently associated with poly(A)+hnRNA from irradiated
cells labeled by their residual [3H]RNA components. Arrows indicate the positions of marker proteins, only for lane 9.
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FIGURE 8 Comparison of hnRNP proteins with proteins released
from nuclear matrices by RNase A digestion and proteins that can
be cross-linked to poly(A)+hnRNA by UV irradiation of intact cells .
The samples of [ 35S]methionine-labeled proteins were prepared as
described in the legends of Figs. 6 and 7 . The figure shows a
fluorograph of a 10-18% SIDS polyacrylamide gel . Lane 1, proteins
cross-linked to poly(A)+hnRNA isolated from cells irradiated with
UV light for 3 min (compare Fig . 7, lane 4) ; lane 2, proteins released
during the incubation of nuclear matrices with RNase A (compare
Fig . 6, lane 4) ; lane 3, molecular weight marker proteins for the lanes
1 and 2 ; lane 4, crude preparation of [35S]methionine-labeled pro-
teins from HeLa cell 30S hnRNP particles, isolated following the
method of Beyer et al . (10) ; lane 5, molecular weight marker proteins
for lane 4 . A, B, and C indicate the molecular weight ranges of the
three groups of main hnRNP proteins that can be discerned in
isolated hnRNP particles, according to Beyer et al . (10) .

three nucleotides remained attached to proteins ofthe covalent
poly(A)-containing hnRNP complexes . When these proteins
were analyzed by gel electrophoresis, the fluorograph showed
that the residual [ 3 H]radioactivity was associated with proteins
of 41,500 and 43,000 mot wt (Fig . 7, lane 9) . When, in the
control experiment, the same procedure was applied to nonir-
radiated cells, no protein-associated 3H label could be detected
on the fluorograph (not shown) . This result proves that these
two proteins are directly associated with the hnRNA and not
indirectly, for example, by disulfide bonds .
The 41,500 and 43,000 mot wt proteins were not released by

the standard high-salt treatment during the preparation of
nuclear matrices, as irradiation of isolated nuclear matrices
cross-linked about the same amount of these proteins as did
irradiation of whole cells. Both proteins were also not released
during the RNase treatment ofnonirradiated matrices (cf. Fig .
6) . These facts and the finding that these proteins specifically
can be cross-linked to hnRNA by UV irradiation ofintact cells
strongly suggest that the proteins are involved in the binding
ofhnRNA to the nuclear matrix .

DISCUSSION

The protein components constituting the internal part of the
nuclear matrix have not been identified or localized yet, as has

been done for cytoskeletal proteins by, for example, immuno-
fluorescence studies . However, several groups ofworkers using
various kinds ofisolation procedures have described the mor-
phology of such structures in many types of cells (12, 16-18,
36) . Besides that, evidence has been obtained that intranuclear
matrix structures are involved in processes such as DNA rep-
lication (37), hnRNA attachment (17, 18), and specific hor-
mone binding (38) .

In this study we have presented a method to isolate nuclear
matrices of HeLa S3 cells in which special care was taken to
avoid damage by proteolytic or ribonuclease activities. The
isolated nuclear matrices were composed of a peripheral layer
and an internal matrix consisting of nucleolar and fibrillar
structures. They were strikingly similar to nuclear matrices
isolated from various types of cells by other workers (17, 18,
26) . In our method of matrix isolation, the high-salt extraction
to remove digested DNA (17) was preceded by a centrifugation
ofthe DNase 1-treated nuclei over a sucrose layer because this
evidently led to increased conservation of internal structures .
It was confirmed that rapidly labeled hnRNA copurified with
the matrices, and we were able to show that undegraded
hnRNA could quantitatively be recovered from purified ma-
trices (Fig . 3) . The RNA did not seem to be essential for the
integrity of the internal fibrillar structure (Fig. 1 B) . The asso-
ciation of hnRNA with the nuclear matrices proved to be very
stable, a fording that is in agreement with recent results of
Long et al . (26). The hnRNA can be recovered from nuclear
matrices only by disruption of these structures . Harsh treat-
ments such as 8 M urea, 2 M KCI, 5% DOC, 10 M formamide,
or prolonged sonication did not release the hnRNA from the
matrix (26 ; and our own unpublished results) . Because, for
example, sonication or extraction with buffers is routinely used
for the isolation ofhnRNP particles from nuclei (1, 2), it should
be realized that, among the proteins present in such prepara-
tions probably matrix proteins, involved in the binding of
hnRNA, are also present .
To distinguish between the matrix proteins bound to hnRNA

and the packaging proteins associated with the hnRNA but not
with the matrix, we treated nuclear matrices with ribonuclease .
Because the matrix itself is ribonuclease resistant, such a treat-
ment releases only the proteins that are associated with the
hnRNA and not with the matrix (generally 1-2% of the total
matrix protein) . Some prominent polypeptides were released
specifically by the ribonuclease treatment (Fig . 6) . Three to
five of the released proteins were found in the 33,000-38,000
mot wt range and comigrated on SDS polyacrylamide gels with
the group A and B proteins (32,000-34,000 and 36,000-37,000
mot wt, respectively) described by Beyer et al . (10) as being the
main hnRNP subparticle proteins (see Fig . 8).

The matrix proteins involved in the binding ofhnRNA were
analyzed after their cross-linking to the RNA by UV irradia-
tion. UV irradiation (at 254 nor) is known to induce covalent
cross-linking of protein to DNA and to RNA, and the specific-
ity of UV-induced cross-linking has been confirmed by many
investigators (28, 39-43) . It is generally agreed upon that a
firm, noncovalent complex must be present at the time of
irradiation to achieve covalent cross-linking (40-43) . To cor-
roborate the specificity of the association of hnRNA with the
nuclear matrices, UV irradiation was performed on intact cells
as well as on isolated nuclear matrices . Furthermore, the cross-
linked complexes were purified in the presence of SDS to
prevent copurification of noncovalently associated proteins .
Although there also seems to be some cross-linking of predom-
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inant proteins of the nuclear matrix preparations, two minor
nuclear matrix components (41,500 and 43,000 mot wt) were
very efficiently cross-linked to poly(A)+hnRNA as well as to
poly(A)-hnRNA by both in.vivo and in vitro irradiation (Figs.
7 and 8) . In addition to that, the same type of experiment was
also performed on hnRNP complexes labeled in the RNA
moiety. After purification of the hnRNP complexes, the RNA
was exhaustively digested away . The residualTCA-precipitable
radioactivity was covalently attached to protein and sufficient
in amount (about one to three nucleotides perproteinmolecule)
to visualize these proteins after fluorography (Fig . 7, lane 9) .
The major proteins that were cross-linked to hnRNA in these
experiments had apparent molecular weights of 41,500 and
43,000 (Fig. 8), and we found that these proteins comigrated
on SDSpolyacrylamide gels with the groupCproteins (42,000-
44,000 mot wt) described by Beyer et al . (10) as "interacting
directly with hnRNA to form a smaller high salt-resistant
complex." On the basis of salt dissociation studies on hnRNP
particles, Beyer et al . (10) concluded that these groupCproteins
are more tightly associated with hnRNA than are the groupA
and B proteins . A protein with a similar molecular weight
(40,000) was also described by Augenlicht et al . (44) in the
human colon carcinoma cell line H2-29. They reported a
nuclease-resistant complex of -26 ribonucleotides and a major
protein of 40,000 mot wt that was distinct from the major
hnRNP protein in these cells, which had a molecular weight of
34,000.
The results depicted in Fig. 7 may suggest that other hnRNP

proteins (for example, the 33,000-38,000 mot wt A and B
proteins) were not cross-linked to theRNAduring UV irradia-
tion . However, recent experiments' have shown us that at least
two additional polypeptides (corresponding in mobility on SDS
gels to the B I andB2 hnRNP core proteins) are cross-linked to
hnRNP as well, although much less efficiently than are the C
proteins . Apossible explanation for this would be the fact that
the A and B hnRNP core proteins are not as tightly associated
with hnRNA as are the C proteins, as has been demonstrated
by salt-dissociation studies (10) . It is known that efficient cross-
linking by UV irradiation occurs only when the interacting
molecules are close and when their reactive groups are less
than one bond length apart (39) .
Our experiments, thus, indicate quite clearly that the 41,500

and 43,000 mot wt proteins are present in 0.4 M (NH4)2SO4-
washed nuclear matrices and are tightly associated with
hnRNA. However, they are apparently not released by the
ribonuclease treatment of these structures (Fig . 6) . The most
likely explanation for these results is to assume that hnRNA is
bound to the nuclear matrix via these proteins .
As a conclusion we may state that our experiments indicate

that there is a specific association of hnRNA with a nuclear
protein matrix. The hnRNA in nuclear matrices is associated
with a specific set of proteins that are very similar to the
hnRNA-associated proteins found by other groups. Some of
these hnRNA-associated proteins seem to function in the
hnRNA-nuclear matrix binding. The hnRNA-containing nu-
clear matrix is, to a certain degree, an accurate representation
of the in vivo situation, because hnRNA present in isolated
matrices is associated with the same set of proteins as it is in
the intact cell . Thus, the nuclear matrix may represent a very
useful model structure for studies on the processing and trans-
port of RNA in the nucleus.

' C . A. G . van Eekelen. Manuscript in preparation .
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