To determine the effects of nerve explants on the integrity of motor end plates in vitro, cholinesterase activity and structure of end plates were compared in newt muscle denervated in vivo, cultured in the absence of nerve explants, and cultured in the presence of sensory ganglia. In neuromuscular junctions denervated in vivo or in vitro, the synaptic vesicles become clumped and fragmented. A few intact vesicles escape into the synaptic cleft. Axon terminals degenerate until they are left as residual bodies within the Schwann cell cytoplasm. Junctional folds on the muscle surface are reduced in height and are no longer evident once traces of axoplasm within the Schwann cell disappear. End plate cholinesterase activity is reduced as junctional folds are lost. When muscle is cultured in the presence of a sensory ganglion, the terminal axoplasm degenerates in the same manner but junctional folds persist on the muscle surface. Moderately intense cholinesterase activity remains in association with the junctional folds, so that normal motor end plates are maintained in the absence of innervation. These results show that degenerative changes in the structure of the motor end plate and loss of cholinesterase activity occurring in organ culture as a result of denervation can be retarded by nerve explants that do not directly innervate the muscle.

This content is only available as a PDF.