Acidification of the endosomal pathway is important for ligand and receptor sorting, toxin activation, and protein degradation by lysosomal acid hydrolases. Fluorescent probes and imaging methods were developed to measure pH to better than 0.2 U accuracy in individual endocytic vesicles in Swiss 3T3 fibroblasts. Endosomes were pulse labeled with transferrin (Tf), alpha 2-macroglobulin (alpha 2M), or dextran, each conjugated with tetramethylrhodamine and carboxyfluorescein (for pH 5-8) or dichlorocarboxyfluorescein (for pH 4-6); pH in individual labeled vesicles was measured by ratio imaging using a cooled CCD camera and novel image analysis software. Tf-labeled endosomes acidified to pH 6.2 +/- 0.1 with a t1/2 of 4 min at 37 degrees C, and remained small and near the cell periphery. Dextran- and alpha 2M-labeled endosomes acidified to pH 4.7 +/- 0.2, becoming larger and moving toward the nucleus over 30 min; approximately 15% of alpha 2M-labeled endosomes were strongly acidic (pH less than 5.5) at only 1 min after labeling. Replacement of external Cl by NO3 or isethionate strongly and reversibly inhibited acidification. Addition of ouabain (1 mM) at the time of labeling strongly enhanced acidification in the first 5 min; Tf-labeled endosomes acidified to pH 5.3 without a change in morphology. Activation of phospholipase C by vasopressin (50 nM) enhanced acidification of early endosomes; activation of protein kinase C by PMA (100 nM) enhanced acidification strongly, whereas elevation of intracellular Ca by A23187 (1 microM) had no effect on acidification. Activation of protein kinase A by CPT-cAMP (0.5 mM) or forskolin (50 microM) inhibited acidification. Lysosomal pH was not affected by ouabain or the protein kinase activators. These results establish a methodology for quantitative measurement of pH in individual endocytic vesicles, and demonstrate that acidification of endosomes labeled with Tf and alpha 2M (receptor-mediated endocytosis) and dextran (fluid-phase endocytosis) is sensitive to intracellular anion composition, Na/K pump inhibition, and multiple intracellular second messengers.

This content is only available as a PDF.