T cell extravasation from the bloodstream into the perivascular tissue during inflammation involves transmigration through the endothelial cell layer and basement membrane into the interstitial matrix. The specific mechanisms by which T cells transmigrate, however, are poorly understood. Matrix degradation by enzymes such as 72-kD gelatinase has been implicated as an important component in tissue invasion by various types of cells. In this study, we have demonstrated that 72-kD gelatinase is induced in T cells upon adhesion to endothelial cells. We also provide evidence that the induction of 72-kD gelatinase is mediated by binding to vascular cell adhesion molecule-1 (VCAM-1). The T cells used in this study were cloned murine Th1 cells antigenic to myelin basic protein. These cells express very late antigen-4 on their cell surface and have been shown to infiltrate the brain parenchyma and cause experimental autoimmune encephalomyelitis when infused into normal mice (Baron, J. L., J. A. Madri, N. H. Ruddle, G. Hashim, and C. A. Janeway. 1993. J. Exp. Med. 177:57-68). In the experiments presented here, T cells were cocultured with VCAM-1-positive and -negative endothelial cells grown in a monolayer in order to study the expression of 72-kD gelatinase upon T cell adhesion. Additional experiments were conducted in which T cells were cocultured with VCAM-1 positive cells grown on microporous membranes suspended in transwells to study 72-kD gelatinase following T cell transmigration. T cells were also incubated with recombinant VCAM-1 in order to study the role of VCAM-1 in inducing 72-kD gelatinase. The results demonstrated that T cells adhered to both VCAM-1-positive and -negative endothelial cells. T cells that adhered to the VCAM-1-positive endothelial cells exhibited an induction in 72-kD gelatinase protein, activity, and mRNA whereas 72-kD gelatinase was not induced in the T cells that adhered to the VCAM-1-negative endothelial cells. Incubating T cells with recombinant VCAM-1 coated onto tissue culture plastic showed that T cells adhered to the molecule and that adhesion to recombinant VCAM-1 was sufficient to induce 72-kD gelatinase. Further, T cells that had transmigrated through a VCAM-1-positive endothelial cell monolayer exhibited 72-kD gelatinase activity but not mRNA expression. In addition, 72-kD gelatinase was detected on the cell surface of the transmigrated T cells by FACS analysis. In other experiments, TIMP-2 was added to the transmigration studies and was shown to reduce T cell transmigration.(ABSTRACT TRUNCATED AT 400 WORDS)

This content is only available as a PDF.