
IDENTIFICATION OF AN ENDOGENOUS MEMBRANE

ANCHOR-CLEAVING ENZYME FOR GROUP A

STREPTOCOCCAL M PROTEIN

Its Implication for the Attachment of Surface Proteins
in Gram-positive Bacteria

BY VIJAYKUMAR PANCHOLI AND VINCENT A. FISCHETTI

From The Rockefeller University, New York, New York 10021

M protein ofgroupAstreptococci, an a-helical coiled-coil fibrillar molecule found
on the surface of the organism (1), is responsible for the antiphagocytic property
ofthese bacteria (2). Antigenic variation (3) and type-specific immunity are contin-
gent upon epitopes located within the NH2-terminal half of the M molecule (distal
to the cell wall) (4). Amino acid sequences that are conserved among different M
proteins are located in the COOH-terminal half(5, 6) and contain epitopes recently
shown to be responsible for non-type-specific immunity against streptococcal coloni-
zation (7, 8) . The attachment region ofthe molecule, predicted from DNAsequence,
is located at the COOH-terminal end and is composed of a 6 amino acid charged
tail at the COOH terminus followed by 19 hydrophobic amino acids suspected to
be a membrane anchor and an adjacent proline and glycine-rich region situated
within the peptidoglycan layer of the cell wall (1, 9, 10).
Mprotein maybe released from the streptococcal cell after treatment with mura-

lytic enzymes (11) that solubilize the cell wall . When performed in the presence
of 30% rafiinose, the resulting protoplasts are stabilized and the soluble compo-
nents, composed mainly ofcell wall carbohydrate andM protein, maybe separated
from the protoplasts by centrifugation (11) . At pH 6.1, conditions that result in
the complete removal of the cell wall with the muralytic enzyme lysin (12), an ex-
amination of the streptococcal protoplasts revealed a significant quantity of the M
molecule still attached . This indicated to us that both a released and bound form
ofthe M protein could be identified and that theMmolecule maybe attached directly
to the cytoplasmic membrane . Though suggestive from the hydrophobic character-
istics ofthe COOH-terminal 19 amino acids and6charged amino acids at the COOH
terminus of the M protein sequence (a characteristic conserved among other sur-
face proteins from gram-positive bacteria [13]), the exact mechanism by which M
protein, or these other surface proteins, are bound to the cell membrane has not
been directly determined .
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MEMBRANE ANCHOR-CLEAVING ENZYME FOR M PROTEIN

Recently, we reported the purification and characterization ofthe COOH-terminal
cell wall-associated region of the M protein (9) . After proteolysic digestion of the
surface exposed portion of the M molecule, the region embedded within the cell
wall, and thus protected from proteolysis, was released by solubilizing the cell wall
with a muralytic enzyme . By amino acid sequence analysis, the NH2 terminus of
this wall-associated segment was found to start at residue 298 of the 441 DNA-predicted
amino acids for the M molecule (10) . Amino acid composition ofthis fragment showed
that the COOH-terminal 19 hydrophobic amino acids and charged tail were missing
(9), indicating that M protein released after cell wall digestion may be a consequence
ofthe cleavage of this hydrophobic anchor. These findings suggested that an endoge-
nous enzyme may be responsible for this activity (9) .

In the present study, a thiol and pH-dependent enzyme with the capacity to re-
lease M protein from isolated protoplasts is identified . We show that under certain
pH conditions the streptococcal cell wall may be removed without releasing M pro-
tein from the resulting protoplasts . The M protein remains bound to the membrane
even after treatment with sodium carbonate, pH 11.2, and Triton X-114, indicating
that attachment is limited to the cytoplasmic membrane through a hydrophobic an-
chor. We find that a change in the pH environment of the M protein-charged pro-
toplasts results in the release ofthe M molecules that partition into the hydrophilic
phase of Triton X-114 . Evidence is presented that the enzyme responsible for M pro-
tein release is membrane bound .

Materials and Methods
Bacterial Strains.

	

Mtype 6 streptococcal strain D471 and M- mutant T28/51/4-4 (14) are
from The Rockefeller University collection.
M Protein .

	

ColiM6.1 protein is the purified product ofthe emm-6.1 gene expressed in Esch-
erichia coli (15).

Preparation ofProtoplasts.

	

All experiments were performed using protoplasts prepared from
an overnight culture of streptococci grown in Todd-Hewitt broth . For some experiments, or-
ganisms were centrifuged and washed twice in 100 mM PBS, pH 6.1 . After adjusting to OD
at 650 nm to 1.0, the cells were concentrated 30-fold in 50 mM phosphate buffer containing
30% (wt/vol) n-raffinose (raffinose), 5 mM EDTA, pH 6.1 . Group C streptococcal phage-
associated lysin (lysin), prepared as described (16), was added to the suspension yielding a
final concentration of 128 U/ml, and incubated at 37°C for 45 min to remove the cell wall .
Preparations examined by phase-contrast microscopy revealed protoplasts typically seen as
individual phase dense spherical organisms as previously described (17) . Protoplasts, pre-
pared in this way, have been shown to yield streptococcal membranes virtually devoid of cell
wall carbohydrate (12) .

Protoplasts were also prepared in 50 mM phosphate buffer containing 5 mM EDTA and
30% (wt/vol) raffinose at pH 7 .0, 7 .4, or 8.0 and at pH 4.0, 5 .0, or 5.5 in 50 mM sodium
acetate buffer containing 30% raffinose and 5 mM EI7TA. Unless otherwise stated, protoplasts
were prepared from M+ strain D471 in 50 mM sodium acetate buffer at pH 5.5 containing
30°Jo raffinose and 5 mM EDTA (raffinose buffer) and washed (16,000 g for 5 min) in the
same buffer.

Effect ofpH Change on the Release ofM Protein .

	

After lysin extraction, the protoplasts were
washed three times in raffinose buffer, pH 5.5, to remove the lysin enzyme . The washed pro-
toplasts were then suspended to the initial volume of the same buffer and divided into two
equal parts andcentrifuged . One ofthe aliquotswas resuspended in the samevolume ofraffinose
buffer, pH 5.5, and another in 50 mM phosphate- liuSer containing 30% raffinose and 5 mM
EDTA, pH 7.4. Protoplasts were then incubated in the above buffers separately for 60 min
at 37 °C . Similarly protoplasts prepared at pH 7 .4 were washed three times in raffinose buffer,
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PANCHOLI AND FISCHETTI 2121

pH 5.5, centrifuged, and resuspended in raffinose buffers, pH 7.4 or 5.5, and incubated at
37°C for 60 min . Protoplasts were sedimented (16,000 g for 5 min) and the amount of M
protein in the supernatants was quantitated by k-ELISA as described below.

Membrane Preparation.

	

Protoplasts were prepared at pH 5.5 as described above, washed
in raffinose buffer, and hypotonically lysed in 5 mM acetate buffer containing 1 mM PMSF,
0.1 mM N-p-tosyl-L-lysine chloro-methyl ketone (TLCK)l and 2 mM p-hydroxymercuri-
phenylsulfonic acid (pHMPS) and incubated for 30 min on ice followed by three freeze and
thaw treatments. The resultant membranes were collected by centrifugation at 100,000 g for
1 h at 4°C, washed once in the acetate buffer and resedimented .

Sodium Carbonate Treatment.

	

The streptococcal membrane pellet was suspended in 0.1 M
sodium carbonate (pH 11.2) and incubated at 0°C for 30 min. The membranes were then
sedimented and the bound M protein analyzed by Western blot as described below.

Triton X-114 Phase Separation ofBound and ReleasedM Molecules.

	

Sodium carbonate-treated
membranes were washed once with 20 mM Tris-HCl/150 mM NaCl, pH 7.4, before Triton
X-114 (TX114) phase separation as modified from Bordier (18) . Membranes were suspended
in Tris buffer containing 1% (wt/vol) TX-114 and 1 mM PMSF, 0.1 mM TLCK and were
incubated at 4°C for 30 min . The preparation was centrifuged at 16,000g for 5 min to remove
any insoluble material. The supernatant was transferred to a new tube and incubated at 37°C
for 5 min to induce the condensation o£ TX-114 and centrifuged at room temperature for
5 min at 16,000g. The resulting heavy detergent enriched TX-114 phase and the lighter deter-
gent depleted aqueous phase were separated and the latter readjusted to a concentration of
1% TX-114 . The unsolubilized membrane pellet was retreated twice with TX-114 as described
above . The released form of the M protein was phase separated similarly after removing the
raffinose by dialysis in 20 mM Tris-HCl/150 mM NaCl buffer, pH 7.4, containing 1 mM
PMSF, 0.1 mM TLCK. Electrophoresis and Western blot analysis of the membranes and
detergent rich and poor fractions were as described below.

Kinetics ofMProtein Releasefrom Pmtoplasts in Lysinfree Rafftnose Buffer.

	

Protoplasts prepared
in raffnose buffer, pH 5.5, were washed in the same buffer and resuspended in raffinose buffer,
pH 7.4, and incubated at 37°C for 150 min . At timed intervals, a 200-JAI aliquot of the pro-
toplast suspension was removed, centrifuged, and the quantity of M protein was estimated
as described below.

The E, ffect of Specific Chemical Reagents on the Release ofM Protein from Protoplasts.

	

Protoplasts
prepared in raffinose buffer, pH 5.5, were washed three times, resuspended in raffinose buffer,
pH 5 .5, and the protoplasts in 200-p1 aliquots were sedimented . Protoplasts were then
resuspended in raffinose buffer without EDTA, pH 7.4, containing various concentrations
(1-15 mM) of PMSF, TLCK, zinc chloride, cadmium acetate, calcium chloride, lithium ace-
tate, magnesium chloride, PHMB, pHMPSy dithiothreitol (DTT), 1,10-phenanthroline, EI7TA,
and EGTA and incubated at 37°C with rotation for 30 min (16 rpm) . At the end of the incu-
bation period, the protoplasts were sedimented and the supernatants assayed for the released
M protein both by Western blot analysis and quantitative k-ELISA as described below.

Reversible and Irreversible Action ofInhibitors on the Release ofM Protein .

	

After zinc chloride,
cadmium acetate, calcium chloride, PHMB and pHMPS treatment as mentioned above, the
protoplasts were thoroughly washed with raffnose buffer, pH 5.5, resuspended in the intial
volume of raffinose buffer, pH 7.4, and incubated once again at 37°C for 60 min with rota-
tion . At the end of the incubation, each sample was centrifuged and the amount of released
M protein was determined by k-ELISA .

Location of the Membrane Anchor-Cleaving Enzyme (MACE).

	

Protoplasts derived from the M-
strain were prepared and washed in raffinose buffer, pH 5.5, and served as an enzyme source
(M -E') . Protoplasts derived from the M' strain were similarly prepared and suspended in
2 mM PHMB in raffinose buffer for 20 min and washed five times in raffinose buffer, pH
5.5 . These protoplasts served as the bound M protein substrate source (M'E-). After ad-

I Abbreviations used in this paper: DTT, dithiothreitol; GPI, glycosyl-phosphatidylinositol ; MACE, mem-
brane anchor-cleaving enzyme; PHMB, p-hydroxymercuribenzoate; pHMPS, p-hydroxymercuriphenyl-
sulfonic acid ; PI, phosphatidylinositol ; TLCK, N-p-tosyl-i-lysine chloro-methyl ketone ; VSG, variable
surface glycoprotein .
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justing the optical density of the protoplasts from each strain to 1 .0 (at 650 nm), they were
sedimented and resuspended in 1/30 of the original volume in raffinose buffer, pH 7 .4 . The
M'E- and M- E' protoplasts were then mixed in different proportions in a final volume of
1 .0 ml . M'E- and M-E' protoplasts were also incubated independently. To determine
whether the enzyme is released in the supernatant of M-E' protoplasts, they were suspended
in raffinose buffer, pH 7.4, and incubated at 37 °C with rotation for 1 h . The protoplasts
were then sedimented and the supernatant was mixed with an equal volume of M'E- pro-
toplasts . Each reaction mixture was incubated with rotation at 37°C for 1 h .
The rate of the release of M protein in a mixture of M-E' and M'E- protoplasts was de-

termined by mixing them at a ratio of4:1 (M-E'/M'E-) and incubating at 37°C with rota-
tion . At intervals, an aliquot was removed and centrifuged supernatants were analyzed for
the presence of released M protein by quantitative k-ELISA .

Immunoreagents.

	

Polyclonal sera against ColiM6 .1 protein (the purified product ofan E. coli
strain containing the cloned M6 protein gene [15)) were prepared as described (19) and affinity
purified on ColiM6.1 protein linked to glutaraldehyde-activated affinity absorbent resin (4).
Polyclonal antibody to a synthetic peptide representing residues 1-21 of the native M6 pro-
tein was prepared and affinity purified as described (3) . Protein A-purified mAb 1545.1, specific
for the streptococcal group A-specific carbohydrate determinant (n-acetyl glucosamine /31-"3
rhamnose) (20) was a gift from Dr. D. G . Braun (Basel Institute of Immunology, Switzer-
land) . Monospecific polyclonal antiserum to the group A-specific determinant was prepared
as described previously (11) . M protein-specific mAb 10116 has an epitope located within the
conserved region of the M molecule between residues 275 and 289 (21) .

Capture k-ELISAforMProtein and Group Carbohydrate.

	

A capture k-ELISA was used to quan-
titate the amount of M protein and group A-specific carbohydrate in streptococcal digests.
For M protein quantitation, microtiter plates were sensitized with 100141/well of purified anti-
ColiM6 antibody (414g/ml) at 37°C for 3 h and overnight at 4°C . After five washes in PBS/Brij
35 (19), 100 141 of serial twofold dilutions of purified ColiM6 protein (starting at 2 14g/ml)
was added in triplicate to the microtiter wells . This served as the standard curve for M pro-
tein quantitation. Similarly, samples containing M protein were diluted and 1001cl was added
in triplicate to the remaining wells of the antibody-sensitized plates . After incubation for 3 h
at 37°C to allow reaction with the bound antibody, plates were washed five times in PBS-Brij
(19) . 100 141 of 1 :1,000 dilution of M6 mAb 10116 (1 .7 mg/ml) was added to each well and
incubated for 3 h at 37°C. After washing in PBS-Brij, 100 141 of alkaline phosphatase-con-
jugated anti-mouse IgG (1 :1,000 dilution ; Sigma Chemical Co., St . Louis, MO) was added
to each well and allowed to react for 18 h at room temperature. The plates were again washed
and developed as described (19) . 1 min after substrate addition, wells were automatically
monitored every 2 min with intermediate shaking to determine the reaction rate using an
ELIDA-5 plate reader (Physica Inc., New York, NY) as described (19) . Values were calculated
based on the absorbance/hour of the samples compared with the standard curve plotted by
third order regression analysis .

For estimation of group A specific carbohydrate (n-acetyl glucosamine (31--}3 rhamnose),
a capture k-ELISA similar to that used for M protein quantitation was performed with specific
modifications. The microtiter wells were first sensitized with polyclonal affinity-purified rabbit
anti-group A-specific carbohydrate antibody (3.214g/ml) . For a standard curve representing
the complete release of the cell wall carbohydrate (12, 22, 23), a lysin extract of strain D471
digested at pH 6.1 for 60 min was serially diluted and 100 141 added to the wells in triplicate .
Samples ofcell wall digests were diluted and 100141 was added to remaining wells of the sensi-
tized plate also in triplicate . Group A-specific mAb 1.545 .1, 1 :500 dilution (100141/well, 1 .38
mg/ml), was added in the third step to identify the bound carbohydrate. After processing
by the method described above for M protein, the absorbance values obtained for the un-
known samples were compared with those of the standard curve .
SDS-PAGE and Western Blot.

	

Western blots of proteins separated on 12% SDS-polyacryl-
amide gels were analyzed with M protein-specific mAb 10116 and peptide-specific antibody
to the NH2-terminal sequence 1-21 of M6 protein as described (9, 21).
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Results
Identification ofa Bound and Released Form oftheMMolecule.

	

M protein can be released
from the streptococcus by removing the cell wall with lysin, a phase-associated mura-
lytic enzyme that solubilizes the peptidoglycan (16, 23) . When performed in 50 mM
phosphate buffer, pH 6.1, containing 30% raffinose, the stabilized protoplasts can
be separated from the soluble wall components by centrifugation (11) . By this proce-
dure, M protein is found in the extract along with digested cell wall components
(11) . However, even after several washes in raffinose buffer, almost an equal amount
ofM protein is found to remain associated with the protoplasts as estimated byWestern
blot .
To determine if the release of M protein during lysin extraction is independent

of cell wall removal, the lysin extraction was performed under different pH condi-
tions in the presence of30% raffinose . After extraction, the amount of cell wall car-
bohydrate released in relation to released M protein was determined by capture
k-ELISA . At pH 4.0 (not shown) and 5.0 the release of group carbohydrate was <10%
of that liberated at the optimal pH of 6.1, whereas at pH 5.5, 6 .1, 7 .0, 7.4, and 8.0
>80% of the wall carbohydrate was found to be released from the streptococcal cell
(Fig . 1) . In contrast, the maximum release ofM protein was observed from pH 6.1
to 8.0 (ti25 ug/ml), while at pH 5.5 the release was only 0.25 jig/ml . Thus, at pH
5.5, lysin is able to release >80% of the cell wall from the streptococcus without
releasing significant amounts of M protein from the resulting protoplasts .

Characterization ofM Protein as an Integral Membrane Protein .

	

TX-114 phase separa-
tion was used to determine the hydropathic characteristics of the released form of
the M molecule. By this technique, the M protein was found to partition into the
detergent poor (DP) aqueous phase (Fig . 2) . Sodium carbonate treatment has been
used to distinguish between peripheral and integral membrane proteins (24) . Strep-
tococcal membranes prepared after cell wall removal at pH 5.5 and treated with 100
mM sodium carbonate (pH 11 .2) retained their M protein that could be released
after membrane solubilization with 1% SDS (Fig . 2) . Extraction of sodium car-
bonate-treated membranes with TX-114 does not release the M molecules that are
retained within the insoluble membrane pellet (Fig. 2) .
The membrane-bound form of the M protein was found to be composed of two
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Effect ofpH on the release
ofM protein and cell wall carbohydrate
during protoplast formation . M+
streptococci were suspended with lysin
in 30% rafnose buffer at various pH
conditions . After 45 min incubation at
37°C, the suspension was centrifuged
and the supernatant was analyzed by
k-ELISA for M protein and group car-
bohydrate release .
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FIGURE 2 .

	

SDS-PAGE and Western
blot analysis of released and membrane
bound forms ofM protein. M protein
released from protoplasts at pH 7.4
(Rel)was partitioned with TX114 . The
detergent-poor (Rel-DP) and deter-
gent-rich (Rel-DR) fractions were
probed with M protein specific mono-
clonal 10116 whose epitope is mapped
at residues 275-289 . M protein-charged
membranes washed with sodium car-
bonate were solubilized in 1% SDS,
centrifuged, and analyzed . The soluble
proteins (SDS-S) and insoluble pellet
(SDS-P) were reacted with monoclonal
10116. Sodium carbonate washed mem-
branes were also treated with TX-114,
centrifuged, and the supernatant was
partitioned into detergent-poor (TX-
114-DP) and detergent-rich (TX-114-
DR) fractions. These along with the
membrane pellet (TX-114-P) were re-
acted with the 10116 monoclonal. The
membrane form of the M protein in
the SDS-S and the TX-114-P were re-
acted with antibodies to synthetic pep-
tide 1-21 of the native M6 molecule
(Anti-SM6) . Molecular mass standards
(kD) include, phosphorylase B, 97 ;
BSA, 68 ; ovalbumin, 43 ; carbonic an-
hydrase, 29 .

major bands, one slightly smaller than the released form (N55 kD) and the other
at 43 kD (Fig . 2) . Both molecular forms react with peptide-specific antibody directed
to residues 1-21 of the native molecule, ruling out the possibility that the reduction
in size is due to a cleavage at the NH2-terminal end. Because both forms are mem-
brane bound, the differences observed between them may be the result of variation
at the COOH-terminal end.

Effect ofChange in pH on M Protein Release.

	

To examine if the release ofM protein
from the protoplasts is pH dependent and not lysin dependent, protoplasts were
prepared in raffinose buffer at pH 5.5 and washed three times in this buffer without
lysin. When the protoplasts were then sedimented andresuspended in raffinose buffer
at pH 7.4 and further incubated for 30 min without lysin, the bound M protein
was released from the protoplasts (Fig . 3) . However, when protoplasts were first pre-
pared at pH 7.4 (resulting in the release ofM protein along with wall components),
washed, resuspended, and incubated in raffinose buffer at pH 5.5 for up to 30 min
at 37°C, the further release ofM protein was negligible (Fig . 3) . These results indi-
cate that the release of M protein is not mediated by the lysin enzyme itself but
by a pH-dependent endogenous factor.
To examine the release of M protein from the protoplasts with relation to time,

protoplasts prepared in raffinose buffer, pH 5.5, were centrifuged and resuspended
in raffinose buffer, pH 7.4 . At timed intervals, aliquots were removed, centrifuged,
and supernatants were assayed for M protein. A continuous increase occurred in
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the amount ofM protein released into the supernatant with amaximum level achieved
at -60 min (Fig . 4) . No significant increase in the amount of M protein was ob-
served after this time . Western blot analysis revealed a concomitant decrease in the
amount ofM protein remaining on protoplasts obtained at each time interval with
negligible amounts found after 60 min (data not shown) .

Identification ofanMProtein-releasing Enzyme. Specific chemical reagents were used
to determine their effect on the release ofM protein from the protoplasts . Protoplasts,
prepared and washed in raffinose buffer at pH 5.5, were resuspended in raffinose
buffer, pH 7.4, containing such reagents . By this technique, the release ofM protein
could be inhibited with 10 mM zinc chloride, 10 mM cadmium acetate, 10 mM
CaC12, 0.1-2 mM PHMB and pHMPS (Table 1) . Lithium acetate (10 mM), mag-
nesium chloride (10 mM), TLCK (5 mM), PMSF (5 mM), or phenanthroline did
not significantly influence the release ofMprotein from the protoplasts nor didEDTA
and EGTA (Table I) . In the presence of 5 mM DTT, the release ofM protein was
found to increase 50% above control protoplasts incubated without DTT (Table I) .

Reversible and Irreversible Enzyme Inhibitors.

	

Protoplasts prepared at pH 5.5 and
pretreated with Zn2+ , Cd2+ , or Cat' then washed free of these inhibitors and rein-
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Effect of change in pH on
the release of M protein . The super-
natant of protoplasts prepared at pH
5 .5 and three washes in raf&nose buffer
were examined for M protein release
by k-ELISA . The washed protoplasts
were then suspended in raf$nose buffer
at pH 7 .4, incubated for 30 min, cen-
trifuged, and the supernatant was ana-
lyzed for M protein. The supernatant
of protoplasts prepared at pH 7 .4 and
incubated atpH 5 .5 was alsoexamined
for M protein release. Inset shows a
Western blot ofthe supernatants ofthe
samples (af) analyzed by k-ELISA .
Molecular weight markers are as in
Figure 2 .

FIGURE 4.

	

Time course ofthe release of M protein
from protoplasts . Protoplasts prepared in raffinose
buffer at pH 5 .5 were washed and suspended in
raffinose buffer 7.4 . Samples removed at timed in-
tervals were centrifuged and the supernatant wasex-
amined by k-ELISA for M protein .
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TABLE I

Effect of Specific Chemical Reagents on the Release ofM Protein

Values are mean t SEM of triplicate samples .
' A, Protoplasts were suspended in raffinose buffer, pH 7 .4, containing the chem-

ical reagents, incubated at 37°C for 30 min, centrifuged, and supernatant was
analyzed for M protein .

t B, Protoplasts were prepared as in A, washed free of chemical inhibitors and
reincubated at 37°C for 60 min in rafhnose buffer, pH 7 .4.

cubated in raffinose buffer, pH 7 .4, were found to again release Mprotein effectively
(Table I) . In contrast, PHMB- or pHMPS-treated protoplasts exhibited minimal
M protein release under the same conditions (Table 1) . Thus, while divalent cations
such as Zn2+ , Cdz+ , and Cat' act as reversible inhibitors of the releasing enzyme,
the inhibitory effect of PHMB or pHMPS is irreversible.

Location of the Releasing Enzyme in Streptococcal Cells .

	

To determine if the enzyme
activity is membrane bound and not released in the protoplast supernatant, an assay
system was designed in which protoplasts from an M- streptococcal strain served
as a source of enzyme (M -E+) and protoplasts from an M+ strain, treated with
PHMB to irreversibly inactivate the endogenous enzyme, were a source of bound
M protein (M+ E-). The M-E` and M+E- protoplasts prepared at pH 5 .5 were
mixed at various ratios and incubated for 1 h in raffinose buffer, pH 7.4 . Maximum
release of M protein was found to occur at a ratio of 4:1 (M-E+/M+E-) (Fig. 5),
suggesting that the quantity ofM protein released is enzyme dependent . The time
course of the release using a 4:1 ratio (M-E+/M+E-) is also shown in Fig. 5 (inset).
When M-E+ protoplasts were first incubated in raffinose buffer, pH 7 .4, alone

for 60 min at 37 °C and the supernatant was added to the M'E- protoplast sus-
pension and incubated for an additional 60 min at 37°C, no release ofM protein
was observed (Fig. 5). This indicates that the M protein-releasing enzyme is bound
to the protoplast membrane and not secreted .

Discussion
The association ofM protein to the cytoplasmic membrane became apparent when

streptococcal protoplasts were examined after cell wall removal with the muralytic

Reagent

Control

A'

28.6 t 1 .03

M protein

,aglml
Bt

5 mM PMSF 26.1 t 0.72
1 mM TLCK 24.0 t 0.83
10 mM ZnC12 0 .5 t 0.05 35 .3 t 4.84
10 mM CdOAc 4.4 t 0 .56 25 .5 t 1 .75
10 mM CaC12 2 .2 t 0.08 27 .9 t 2 .69
10 mM EDTA 35.3 t 2 .04
10 mM EGTA 32.5 t 5 .21
5 MM MgC12 34.2 t 2 .77
10 mM LiOAc 37 .5 t 4.76
1 mM PHMB 8.8 t 1 .71 1 .7 t 0 .19
2 mM pHMPS 8.1 t 0 .56 3 .2 t 0.17
5 mM dithiothreitol 43 .7 t 2 .34
5 mM 1,10-phenanthroline 27 .1 t 0.49
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Membrane association of the M protein-releasing enzyme. As an enzyme source,
protoplasts from M- streptococci (M-E') (prepared at pH 5 .5) were mixed at various ratios (1 :1,
2 :1, 4:1) at pH 7.4 with PHMB-treated protoplasts prepared from M' streptococci (M'E- ) .
M'E- and M-E' protoplasts incubated alone showed no release as did the supernatant from
M-E' protoplasts [S(M-E')] mixed 1 :1 with M'E- protoplasts . Inset shows the time course of
M protein release from protoplasts mixed 4 :1 (M-E'/M'E-) ratio and no release from PHMB
treated M'E- protoplasts incubated alone .

enzyme lysin. Lysin, an acetyl-muramyl-L-alanine amidase (25), is active against
group A streptococcal cell walls over a broad pH range (from pH 5 .5-8.0) with peak
activity at pH 6.1 (23), the pH routinely used to remove the streptococcal cell wall
for membrane preparation (12, 16, 22). Using a capture k-ELISA to identify the
released components after lysin extraction under various conditions, >80% of the
cell wall could be removed at pH 5.5 . However, at this pH, nearly all the surface
M protein remains firmly bound to the resulting protoplasts. When the protoplasts
are transferred to raffinose buffer at pH 7.4, M protein is released into the superna-
tant until it can no longer be detected on the protoplasts by 60 min. Because the
protoplasts are washed free of lysin before the shift to pH 7.4, this confirms that
the release is mediated by an endogenous factor and not the lysin preparation itself.

Thiol blocking agents and certain divalent cations were found to inhibit the re-
lease of the M protein from protoplasts, while DTT was stimulatory. This supports
the view that the endogenous factor is likely a thiol-dependent membrane an-
chor-cleaving enzyme (MACE). Because MACE activity was not found in the su-
pernatant ofprotoplasts incubated at pH 7 .4 and protoplast-protoplast contact was
required for the release of M protein from MACE-inactivated protoplasts implies
that the enzyme is not secreted but bound to the membrane and exposed on the
outer surface. The initial delay observed in the release ofMprotein from the inacti-
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vated protoplasts (Fig . 5, inset) may be a function of the need to cleave a certain
number of M molecules to afford closer contact between protoplasts for efficient
cleavage (26) .
Membrane anchor-cleaving enzymes have been isolated from both bacteria and

eukaryotes, including mammalian tissues (27, 28). However, irrespective of their
origin, these enzymes have a specificity for the membrane anchor of eukaryotic cell
surface proteins (27, 28). Despite their appearance in bacterial cells, such enzymes
have not been reported to act on their surface proteins . These enzymes have been
shown to be either phospholipase C (PLC) or phospholipase D (PLD) with a sub-
strate specificity for either phosphatidylinositol (PI), phosphatidylinositol phosphates
(PI-phosphates), or glycosyl-phosphatidylinositol (GPI) (28) . Many properties of the
MACE observed in the present study (Table I) are similar to those reported for these
anchor degrading enzymes (29-31) . The inability of phenanthroline, EDTA, or EGTA
to inhibit the action of MACE and the fact that its activity is independent of Cat'
(Table I) indicates that it more closely resembles PLC and not PLD (28-31).
The mechanism by which M protein or other surface proteins of gram-positive

bacteria are anchored to the cell is not known. The presence of 19 hydrophobic amino
acids at the COOH-terminal end of the M molecule is sufficient in length to span
the cytoplasmic membrane (1) and thus may act to anchor the M molecule to the
cell . However, this mechanism has not been directly proven . It is also believed that
proteins such as staphylococcal protein A may be covalently linked to the cell wall
matrix (32) ; however, direct evidence for this type of interaction has also not been
confirmed (32) . Our previous report on the purification and characterization of the
cell wall-associated region of the M protein indicates that it is not covalently linked
to the cell wall peptidoglycan or group carbohydrate moieties (9). The results of the
present study support and extend this idea and indicate that the M molecule is an-
chored to the cell solely through the cytoplasmic membrane . The fact that M pro-
tein is not extracted from the membrane after treatment with sodium carbonate at
pH 11 .2 (24), confirms that the M protein is an integral membrane molecule and
not peripherally associated . Furthermore, since M protein could not be extracted
from the membrane with TX-114 but could be released with SDS indicates that the
bound form is tightly associated with the membrane . The released form was found
to partition into the aqueous phase of TX-114, suggesting that lack of a region
sufficiently hydrophobic to allow partitioning into the detergent rich fraction.
Our finding that the COOH-terminal 19 hydrophobic amino acids and charged

tail of the M molecule, which are predicted from its DNA sequence (10), were not
part of the released form ofM protein after cell wall removal (9), suggests that the
release ofM protein from the membrane is in some way associated with the cleavage
of the COOH-terminal hydrophobic region . Two mechanisms may accomplish this :
(a) The M molecule is bound directly to the membrane through the 19 hydrophobic
amino acids and charged tail and the MACE cleaves this anchor to release the M
molecule or, (b) the hydrophobic tail is removed during M protein assembly on the
cell surface resulting in a post-translational event that links the M protein to a new
membrane anchor complex, and the MACE releases the M protein from this com-
plex . The latter idea is similar to that found with the attachment of cell surface pro-
teins in eucaryotes via a GPI complex (29) . For example, from sequence analysis
of the variable surface glycoprotein (VSG) of Trypanosoma brucei (33), and biosyn-
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thesic studies ofVSG (29), it is clear that the VSG mRNA encodes for a short (17-23
amino acid) COOH-terminal hydrophobic tail that is cleaved after biosynthesis of
the VSG protein and replaced with aGPI moiety. This moiety then serves to anchor
the glycoprotein to the trypanosome membrane. The membrane form of VSG can
be converted to a water-soluble secretory form by the action of GPI-specific phos-
pholipase C that releases the VSG from the GPI-anchor (30, 31). Similar occurrences
have been found in several other eucaryotic surface proteins (28, 29).

In support of the latter hypothesis for M protein attachment, the COOH-terminal
sequence of six surface proteins from streptococci and staphylococci was compared
with the corresponding region of three selected GPI anchored proteins (all predicted
from DNA sequence) (29) (Fig. 6) . In general, sequences that signal GPI attach-
ment are not identical amongdifferent GPI anchored proteins but show a recogniz-
able pattern of specific amino acids (29), a characteristic also seen in the recognition
sequences required in the cleavage of NH2-terminal signal sequences (34) . Results
of the sequence comparison revealed identity or conservation of amino acids be-
tween the bacterial proteins (with consensus sequence LP x TG) and the proposed
cleavage and GPI attachment sequence of the three GPI anchored molecules (Fig .
6), all three of which are cell adhesion proteins (29) . The conservation of a serine
and/or threonine flanking the proposed cleavage site preceded by a proline and a
hydrophobic amino acid is particularly significant (Fig . 6, arrow) . In addition, GPI
anchored proteins feature a run of hydrophobic amino acids, beginning ti10 residues
after the cleavage point, which usually extends to the COOH terminus (29), a char-
acteristic also found in the bacterial surface proteins with the addition of charged
residues at the terminus in the latter molecules (Fig . 6) . Thecleavage site proposed
for the GPI anchored proteins correlates almost exactly with the predicted cleavage
site on the M molecule based on the amino acid composition ofthe COOH-terminal
end of the released form of M protein (9).

(fibronectin BP) (44), all pre
dicted from DNA sequence. Sequence to the right ofthe space (arrow) is absent from the released form
ofM protein (9) and predicted for the other five bacterial proteins. The predicted cleavage ofthe three
GPI-anchored proteins is based on comparison with sequences from other GPI-anchored proteins for
which the cleavage site is known (29) . Colons indicate amino acids found within the proposed cleavage
and attachment region of GPI-anchored proteins (29), which are either identical or conserved when
compared with the COOH-terminal reigon of the bacterial proteins .

FIGURE 6. Alignment of the
N-CAM IPA TLGSPSTSSSFVSLLLSAVTLLLLC COOH-terminal end of three

GPI-anchored adhesion pro-
CsA APS SATTLISPLSLIVIFISFVLLI teins from eukaryotes (29)

(neuralneural cell adhesion molecule
IPS SGHSRHRYALIPIPIAVITTCIVLYMNVL [N-CAM], Dictyoatelium discoi-
" deum contact site A [CsA] and

M Protein LPS TGETANPFFTAAALTVMATAGVAAVVKRKEEN lymphocyte function-associated
[LFA-3]) and six bacterial sur-

Protein G LPT TGEGSNPFFTAAAIAVMAGAGALAVASKRKED face proteins: group A strep-
tococcal M protein (10), group

IgAbp LPS TGETANPFFTAAAATV14VSAGMIALKRKEEN G streptococcal protein G (41),
Streptococcustreptococcus mutans wall-associ-

LPS TGEQAGLLLTTVGLVIVAVAGVYFYRTRR ated protein A (wapA) (42),
" " staphylococcal protein A (32 ),

Protein A LPE TGEENPLIGTTVFGGLSIALGAALLAGRRREL IgA binding protein (IgAbp)

Fibronectin BP LPE TGGEESTNKGMLFGGLFSILGIALLRRNKKNHKA
(43)from group A streptococci
and fibronectin binding protein
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PI-PLC from Bacillus thuringensis (kindly supplied by Martin Low, Columbia Univer-
sity, NewYork, NY) and phosphatidyl choline-PLC from B. cereus (type III, Sigma
Chemical Co.) were unable to release M protein from PHMB-inactivated protoplasts
(data not shown) . This suggests that either the M protein is not anchored by a GPI
complex or, since anchor degrading enzymes have been shown to be selective for
certain GPI anchors (28) (for example, PI-PLC will not cleave the GPI anchor of
D. discoideum CsA [35]), the M protein anchor may not be sufficiently conserved in
structure or exposed on the membrane surface for enzymatic cleavage by these specific
GPI-degrading enzymes.
The size difference found between the secreted and bound forms of the M mole-

cule by Western blot analysis (Fig . 2), is consistent with certain GPI anchored pro-
teins where the bound form is found to be either smaller (36) larger (37) or the same
size (38, 39) as the released form by SDS-PAGE . Thus, the size differences observed
between the bound and released forms as well as between the two bound forms may
depend on the nature of their respective modifications . While the replacement of
a hydrophobic COON-terminal peptide domain by a GPI complex has been estab-
lished for many surface proteins of eukaryotic cells as well as in yeast (28, 29), such
post-translational modifications have as yet to be reported for surface protein of
procaryotes. However, based on the finding of both a membrane anchor-cleaving
activity for the M protein in streptococcal membranes and amino acids corresponding
in sequence and position to those found in GPI-anchored proteins suggest that the
M molecule may also be post-translationally modified for membrane attachment .
Because the COOH-terminal hydrophobic tail found for M protein is highly con-
served in other surface proteins from gram-positive bacteria (Fig . 6) (13), the mech-
anism by which these proteins are bound to the cell may also be conserved .

In eukaryotes, anchor degrading enzymes may function to regulate the concen-
tration of proteins at the cell surface or control the secretion of certain molecules
(28, 29). In the trypanosome, for example, the release of the VSG is suggested as
the mechanismby which the organism escapes immune recognition (40) . M protein
is however, not usually found in the supernatant of growing streptococci, thus it
is unlikely that an anchor cleaving enzyme would act to release the molecule in con-
ventional culture broth. However, it is not known if during the process of coloniza-
tion of the mucosal surfaces or during invasion it is advantageous for the streptococcus
to shed all or a portion of its fiberous M protein to expose other structures more
proximally situated on the streptococcal surface . Whether the ability to release M
protein is a biologically significant characteristic for the pathogenesis of streptococcal
infections is under investigation.

Summary
How streptococcal M protein or other surface proteins of gram-positive bacteria

are anchored to the cell is poorly understood . Previously, we reported that M pro-
tein released after cell wall removal with a muralytic enzyme lacked the COOH-
terminal hydrophobic amino acids and charged tail predicted from DNA sequence .
An endogenous membrane anchor-cleaving enzyme has now been identified with
the ability to release M protein from isolated streptococcal protoplasts . At pH 5.5
in the presence of 30% raffinose, the streptococcal cell wall may be removed with
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a muralytic enzyme without releasing M protein from the resulting protoplasts in-
dicating that the M molecule is attached through the bacterial cytoplasmic mem-
brane . Release ofM molecules occurs when the M protein-charged protoplasts are
placed in raffinose buffer at pH 7.4 . Although Zn2+ , Cd2+, Cat+ , PHMB, and
pHMPS inhibit the activity of the releasing enzyme, the blocking activity of Zn2+ ,
Cd2+ , and Cat+ are reversible while PHMB and pHMPS are irreversible. PHMB-
treated protoplasts are unable to release M protein at pH 7.4 . However, M protein
is liberated from these protoplasts when mixed with those prepared from M- strep-
tococci serving as an enzyme source . The supernatant from M- protoplasts is un-
able to release M protein from PHMB-inactivated M + protoplasts, confirming that
the anchor-cleaving enzyme is membrane bound . Thus, the M protein releasing
activity appears to be the result of a thiol-dependent anchor-cleaving enzyme. Strep-
tococcal membranes treated with sodium carbonate and Triton X-114 still retain the
M protein verifying that it is an integral membrane molecule. Evidence also is
presented indicating significant sequence similarity between M protein and certain
GPI-anchored proteins in the region responsible for protein anchoring .

We thank Emil Gotschlich, Milan Blake, Judith Fox, Satyajit Mayor, and George Cross for
their encouragement and helpful suggestions and KevinJones for his M protein-specific mono-
clonal.
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