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Glucocorticoids (GCs) inhibit the expression 
of infl ammatory mediators by macrophages and 
other cells and are used in the treatment of 
many immune-mediated infl ammatory diseases 
(for review see reference 1). However, their 
long-term use may be limited by severe side 
eff ects. In addition, a proportion of patients 
treated with GCs do not display a strong anti-
infl ammatory response. These patients can be 
diffi  cult to treat eff ectively, but the molecular 
basis of GC insensitivity in infl ammatory dis-
ease remains poorly understood (2).

GCs modulate gene expression via the GC 
receptor (GR), a member of the nuclear 
 hormone receptor superfamily of transcription 
factors (for review see reference 1). When 
 activated by a GC ligand, GR can dimerize, 
bind to palindromic GC response elements, 
and activate the transcription of target genes 
such as phosphoenol pyruvate carboxykinase. 
Side eff ects of GCs are commonly attributed 
to gene induction by ligand-activated GR, al-
though few relevant GC-induced genes have 
been identifi ed. GCs are also known to induce 

the expression of several antiinfl ammatory genes 
such as annexin 1, although the contributions 
of these genes to the antiinfl ammatory eff ects 
of GCs have been questioned (for review see 
reference 1).

Antiinfl ammatory actions of GCs are widely 
thought to be mediated by transrepression, in 
which the ligand-activated GR interferes with 
the capacity of NF-κB and activator protein 1 
to induce the transcription of infl ammatory 
mediators (for reviews see references 1, 3; 4). 
GR with a point mutation in the dimerization 
interface of the DNA-binding domain failed 
to activate GC response element–dependent 
reporter genes but transrepressed NF-κB and 
activator protein 1–dependent reporters (for 
review see reference 1). A knock-in mouse 
strain was generated harboring this GRdim mu-
tation (5–7). In the GRdim mouse, GCs failed 
to induce phosphoenol pyruvate carboxykinase 
expression but exerted clear antiinfl ammatory 
eff ects. This and other observations have led 
to the hypothesis that the side eff ects and 
 antiinfl ammatory properties of GCs can be 
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 uncoupled from one another. In other words, novel GR ag-
onists that selectively induce the transrepression function of 
GR but do not effi  ciently activate transcription might have 
improved therapeutic indices, retaining antiinfl ammatory prop-
erties but causing fewer side eff ects (for reviews see references 
1, 8). However, GCs can activate gene expression in a dimer-
ization-independent manner (for review see reference 1; 9), 
making it unclear to what extent antiinfl ammatory eff ects are 
independent of gene induction or to what extent therapeutic 
eff ects can be dissociated from deleterious eff ects.

GCs have been shown to induce the rapid and sustained 
expression of dual specifi city phosphatase 1 (DUSP1) in sev-
eral cell types, including primary myeloid cells and myeloid 
cell lines (10; for review see reference 11). DUSP1, which 
is also known as mitogen-activated protein kinase (MAPK) 
phosphatase 1, is the founding member of a large family of 
phosphatases that can inactivate MAPKs (12). It is a particu-
larly eff ective inhibitor of c-Jun N-terminal kinase (JNK) and 
p38 MAPK signaling pathways (10), which contribute to the 
expression of infl ammatory mediators at both transcriptional 
and posttranscriptional levels (for reviews see references 13, 
14). The overexpression of DUSP1 in macrophages damp-
ened infl ammatory responses to LPS (10, 15, 16). Responses 
to LPS were enhanced in DUSP1−/− macrophages, and 
 susceptibility to lethal endotoxic shock was dramatically 
 increased in a DUSP1−/− mouse strain (10, 17–21). Thus, 
DUSP1 is an important negative regulator of infl ammatory 
responses, and the induction of DUSP1 gene expression is po-
tentially a novel antiinfl ammatory mechanism of GCs. To date, 

no causal link has been proven to exist between DUSP1 
gene induction, inhibition of MAPK signaling pathways, and 
antiinfl ammatory actions of GCs (for reviews see references 
14, 22). In this study, we show that DUSP1 is necessary for the 
inhibition of JNK and p38 MAPK by GCs and that it con-
tributes to antiinfl ammatory eff ects of GCs in vitro and in vivo.

RESULTS AND DISCUSSION

DUSP1 is required for the inhibition of JNK and p38 MAPK 

by dexamethasone in mouse macrophages

BM macrophages (BMMs) were generated from age- and 
sex-matched DUSP1+/+ and DUSP1−/− littermates and 
were stimulated with LPS for diff erent times with or with-
out pretreatment with 100 nM dexamethasone (Dex). In 
wild-type BMMs, LPS caused the transient induction of 
DUSP1 protein (Fig. 1 A, top). Pretreatment with Dex 
 increased the basal expression of DUSP1 and augmented 
and prolonged its induction by LPS. Similar regulation of 
DUSP1 messenger RNA (mRNA) by LPS and Dex was 
observed (unpublished data). DUSP1 protein was not in-
duced by LPS and/or Dex in DUSP1−/− cells (Fig. 1, A and 
B). The expression of DUSP4 (MAPK phosphatase 2) was 
transiently up-regulated by LPS at both mRNA and protein 
levels, did not diff er  between DUSP1+/+ and DUSP1−/− 
BMMs, and was unaff ected by Dex (unpublished data). All 
three MAPK pathways were activated after LPS stimulation 
of mouse BMMs (Fig. 1 A, bottom). Both JNK and p38 
MAPK pathways were inhibited by Dex pretreatment 
in DUSP1+/+ but not in DUSP1−/− BMMs. Extracellular 

Figure 1. Altered JNK and p38 MAPK signaling in DUSP1−/− BMMs. 

(A) 106 DUSP1+/+ or DUSP1−/− BMMs were pretreated with vehicle or 

100 nM Dex for 4 h and stimulated with LPS for the indicated times. 

 Lysates were blotted for DUSP1 or tubulin-α (top) and total or phosphor-

ylated MAPKs (bottom). Two exposures of the same DUSP1 Western blot 

are shown to illustrate differences in basal and LPS-induced DUSP1 pro-

tein expression. (B) DUSP1+/+ or DUSP1−/− BMMs were pretreated with 

1 nM to 1 μM Dex for 4 h and stimulated with LPS for 4 h. In two sepa-

rate representative experiments, lysates were sequentially blotted for 

DUSP1 and tubulin-α (top) or for phosphorylated and total MAPKs 

 (bottom). (C) Wild-type and GRdim BMMs were pretreated with 1 nM to 1 μM 

Dex for 4 h and stimulated with LPS for 4 h. Lysates were blotted for 

DUSP1 or actin.
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 signal-regulated kinase (ERK) activation did not diff er 
 between DUSP1+/+ and DUSP1−/− BMMs and was not 
 altered by Dex pretreatment.

Dex dose-response experiments were performed to con-
fi rm the relationship between DUSP1 expression and the 
 inhibition of proinfl ammatory signaling (Fig. 1 B). DUSP1 
protein was induced by LPS and dose-dependently increased 
by Dex with an apparent EC50 between 1 and 10 nM, which 
is in agreement with the reported Kd for the binding of Dex 
to GR. There was a corresponding dose-dependent inhibi-
tion of both JNK and p38 MAPK but no inhibition of the 
ERK pathway. In DUSP1−/− cells, there was no expression 
of DUSP1 protein or inhibition of MAPKs. The slight over-
expression of JNK in DUSP1−/− BMMs was not consistently 
observed (Fig. 1 A). The expression of DUSP1 was induced 
by LPS alone and dose-dependently increased by the addition 
of Dex in both wild-type and GRdim BMMs (Fig. 1 C). 
Therefore, DUSP1 is required for the inhibition of JNK and 
p38 MAPK by GCs, and the regulation of DUSP1 gene ex-
pression is independent of GR dimerization. This is the fi rst 
direct evidence of a causal link between DUSP1 induction 
and the inhibition of MAPK pathways by GC. DUSP1 is a 
member of a large family of MAPK phosphatases, several of 
which can inactivate JNK and p38 (12). In mouse BMMs, 
there is no redundancy in terms of DUSP-mediated eff ects of 
GC on MAPK signaling.

Ablation of the DUSP1 gene impairs antiinfl ammatory 

actions of GC

We next investigated the expression of various infl ammatory 
mediators in DUSP1+/+ and DUSP1−/− BMMs (Fig. 2, A 
and B; and Fig. 3). LPS-induced TNF protein expression 
was dose-dependently inhibited by Dex in wild-type BMMs, 
whereas there was only weak inhibition of TNF by Dex in 
DUSP1−/− cells (Fig. 2 A). Chemokine (C-X-C motif) li-
gand 1 (CXCL1) was induced by LPS and dose-dependently 
inhibited by Dex in wild-type BMMs, whereas Dex caused 
a slight enhancement of gene expression in DUSP1−/− BMMs. 
The expression of IL-10 protein was close to the limits of 
 detection in DUSP1+/+ BMMs, and although Dex caused 
a slight increase, this did not reach statistical signifi cance. 
Consistent with previous studies, (17–20), IL-10 was more 
strongly expressed by DUSP1−/− BMMs (on average fi vefold 
higher), and this response was not aff ected by Dex. Both cyclo-
oxygenase 2 (COX-2) and IL-1β were strongly induced by 
LPS and dose-dependently inhibited by Dex in wild-type 
BMMs, whereas in DUSP1−/− BMMs, the inhibitory eff ects 
of Dex were impaired. Inducible nitric oxide synthase (iNOS) 
was up-regulated by LPS; however, the strong, dose-depen-
dent inhibition by Dex did not diff er between DUSP1+/+ 
and DUSP1−/− cells. This indicates that DUSP1−/− cells are 
not merely unresponsive to GCs. Rather, Dex inhibits the 
expression of some genes in a manner that is highly  dependent 

Figure 2. Antiinfl ammatory actions of Dex are impaired in 

DUSP1−/− BMMs. (A) 106 DUSP1+/+ or DUSP1−/− BMMs were pre-

treated with 1 nM to 1 μM Dex for 4 h and stimulated with LPS for 4 h. 

Cytokines in supernatants were quantifi ed by ELISA. Graphs indicate 

means ± SEM (error bars) from at least three independent experiments. 

Cell lysates were blotted for COX-2, IL-1β, iNOS, and ERK proteins. 

(B) Cells were treated as in A, and the expression of various mRNAs was 

examined by RPA. P, undigested probe (10% of input). (C) 106 DUSP1+/+ 

or DUSP1−/− BMMs were pretreated with 100 nM Dex and/or 10 μM 

SB202190 and stimulated with LPS for 4 h. Lysates were blotted for Cox-2, 

IL-1β, or ERK proteins (top), or the expression of various mRNAs was 

examined by RPA (bottom).
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on DUSP1, whereas other genes are suppressed in a more or 
less DUSP1-independent manner.

Quantitative PCR (qPCR) and ribonuclease protection 
assays (RPAs) were used to quantify a number of mRNAs 
involved in the infl ammatory response. Fig. 2 B shows a rep-
resentative RPA, whereas Fig. 3 graphically illustrates the re-
sults of several independent qPCR and RPA experiments, 
and Table I presents statistical analysis of the eff ects of 10 nM 
Dex on proinfl ammatory mRNAs and proteins in DUSP1+/+ 
and DUSP1−/− BMMs. This dose was selected for detailed 
statistical analysis because it is close to both the Kd for binding 
of Dex to GR and the estimated EC50 for induction of 
DUSP1 gene expression by Dex.

Dex inhibited the expression of LPS-induced genes be-
tween 43 (chemokine (C-C motif) ligand 3 [CCL3]) and 
98% (CSF2). Three distinct groups of genes could be rec-
ognized. COX-2, IFN-γ, IL-1α, and IL-1β were all 
strongly inhibited by Dex, and inhibition was severely im-
paired in DUSP1−/− BMMs (Fig. 3, top). The expression 
of the COX-2 protein closely mirrored that of COX-2 
mRNA (Table I). In the cases of CXCL1, CCL3, IL-6, and 
IL-1Ra, the inhibitory eff ects of Dex were less strong yet 
were substantially impaired in DUSP1−/− BMMs (Fig. 3, 
middle). The expression of CXCL1 protein  mirrored that 
of CXCL1 mRNA (Fig. 2 B and Table I). In other cases, 
inhibitory eff ects of Dex ranged from weak (iNOS) to 
powerful (CSF2 and IL-12p40) but were not impaired in 
DUSP1−/− BMMs (Fig. 3, bottom). IL-10 mRNA was un-
aff ected by Dex in DUSP1−/− BMMs (Fig. 2 B); however, 
in DUSP1+/+ BMMs, IL-10 mRNA levels were close to 
the limit of detection, and the eff ects of Dex could not 
be determined.

TNF mRNA was equally inhibited by Dex in DUSP1+/+ 
and DUSP1−/− BMMs at the 4-h time point (Fig. 3 and 
 Table I) as well as at earlier time points (not depicted). This 
contrasts with the impaired inhibition of TNF protein levels 
in DUSP1−/− BMMs (Fig. 2 B). The uncoupling of TNF 
mRNA and protein levels refl ects the fact that TNF biosyn-
thesis is strongly regulated at the translational level. Dex re-
portedly blocks TNF translation by inhibiting JNK (23), and 
p38 MAPK is also known to regulate TNF translation (for 
review see reference 14). Interestingly, several other genes 
strongly aff ected by the DUSP1 knockout are positively reg-
ulated by p38 MAPK via mRNA stabilization and are nega-
tively regulated by GCs via mRNA destabilization (for review 
see reference 14; 24–26). However, few of these studies were 
performed in mouse macrophages.

Figure 3. Dose-dependent suppression of various infl ammatory 

mediator mRNAs by Dex in DUSP1+/+ and DUSP1−/− BMMs. BMMs 

were treated as in Fig. 2 B. mRNAs were quantifi ed using qPCR (CSF2, TNF, 

CXCL1, and COX-2) or RPA. mRNA levels were normalized against GAPDH 

and expressed as percentages of the level in cells treated with LPS 

alone. Graphs show mean values ± SEM (error bars) from three to six 

 independent experiments. 100% values are identifi ed by heavy tick marks 

on the y axes.

Table I. Inhibition of certain proinfl ammatory targets 

by 10 nM Dex in DUSP1+/+ and DUSP1−/− BMMs

Target

Percent inhibition by 10 nM Dex

p-valueDUSP1+/+ DUSP1−/−

TNF protein 58.5 ± 7.9 26.0 ± 13.9 0.007

TNF mRNA 53.2 ± 14.8 47.3 ± 22.7 0.60 (NS)

COX-2 protein 80.1 ± 9.2 36.7 ± 10.0 <0.0001

COX-2 mRNA 84.3 ± 5.2 48.3 ± 21.8 0.003

CXCL1 protein 36.0 ± 8.4 −32.0 ± 21.0 0.007

CXCL1 mRNA 46.8 ± 11.0 −11.4 ± 17.9 0.0003

IL-1α mRNA 50.4 ± 3.3 −8.7 ± 20.8 0.001

IL-1β mRNA 62.3 ± 1.6 25.5 ± 2.0 <0.0001

IL-6 mRNA 53.6 ± 4.3 32.9 ± 11.3 0.014

IFN-γ mRNA 69.5 ± 2.2 25.1 ± 3.7 <0.0001

IL-12p40 mRNA 68.3 ± 10.7 83.1 ± 1.8 0.034

CSF2 mRNA 92.6 ± 4.6 81.7 ± 11.5 0.13 (NS)

In all cases, n > 3, and each measurement represents an independent experiment 

with BMMs derived from single age- and sex-matched DUSP1+/+ and DUSP1−/− 

mice. mRNAs were quantifi ed by qPCR or RPA. COX-2 protein levels were estimated 

by scanning densitometry of Western blots.
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To investigate the involvement of p38 MAPK signaling, 
DUSP1+/+ and DUSP1−/− BMMs were stimulated with 
LPS in the presence of Dex and/or a p38 MAPK inhibitor, 
SB202190. Inhibition of p38 MAPK reduced the expression 
of COX-2 and IL-1β proteins (Fig. 2 C, top), IL-1α, IL-1β, 
and IFN-γ mRNAs (Fig. 2 C, bottom) in both DUSP1+/+ 
and DUSP1−/− BMMs. Dex impaired the expression of 
these genes strongly in DUSP1+/+ but weakly in DUSP1−/− 
BMMs. IL-10 mRNA was undetectable in DUSP1+/+ 
BMMs but was reduced by SB202190 in DUSP1−/− BMMs. 
The expression of IL-12p40 mRNA was increased by the in-
hibition of p38 MAPK in both types of BMMs, although the 
eff ect was particularly clear in DUSP1−/− BMMs (in which 
basal expression was lower). These observations suggest that 
Dex inhibits the expression of COX-2, IL-1α, IL-1β, and 
IFN-γ in large part by inhibiting p38 MAPK. In contrast, 
genes like IL-12p40 are not dependent on p38 MAPK and 
are inhibited by Dex in the absence or presence of DUSP1. 
In fact, IL-12p40 appears to be negatively regulated by the 
p38 MAPK pathway, although it is not clear whether this is 
direct or indirect (e.g., mediated by IL-10). We also confi rm 
that IL-10 expression in mouse macrophages is p38 MAPK 
dependent (20).

We next tested the eff ects of DUSP1 gene knockout on 
the antiinfl ammatory function of GC in vivo using the cuta-
neous air pouch model (27). Zymosan-induced infi ltration 
of leukocytes into a preformed dorsal cavity is macrophage 
driven, GC sensitive, and dependent on proinfl ammatory 
 cytokines and chemokines, including TNF and CXCL1. In 
wild-type mice (Fig. 4), 1 mg/kg Dex (administered orally) 
signifi cantly decreased the concentration of both TNF (P < 
0.005) and CXCL1 (P < 0.05) in the air pouch infl ammatory 
exudate and the number of infi ltrating leukocytes (P < 
0.001). In DUSP1−/− mice, Dex did not signifi cantly inhibit 
the expression of TNF, CXCL1, or the infi ltration of leuko-
cytes to the air pouch (P > 0.05). Thus, antiinfl ammatory ef-
fects of Dex in this model are dependent on the expression of 
DUSP1. Collagen-induced arthritis, a well-established mouse 
model of chronic infl ammatory disease, is exacerbated in 
DUSP1−/− mice (19). It will be of interest to investigate 
whether the DUSP1 knockout also impairs the antiinfl am-
matory actions of GCs in this and other models of immune-
mediated infl ammatory disease.

Our observations suggest the existence of both DUSP1-
dependent and -independent mechanisms of the antiinfl am-
matory action of GCs in a single cell type. Inhibitory eff ects 
of Dex on individual genes may be strongly DUSP1 depen-
dent (e.g., IL-1α), independent of DUSP1 (e.g., CSF2), or 
partially dependent on DUSP1 (e.g., TNF, COX-2, and sev-
eral others). An important conclusion is that antiinfl ammatory 
eff ects of GCs involve the induction of gene expression via a 
noncanonical mechanism that does not require GR dimeriza-
tion. To understand and predict the actions of novel dissoci-
ated GR agonists, it may be important to determine whether 
they are capable of inducing DUSP1 expression. As described 
previously (20), the consequences of ablating the DUSP1 

gene are complex, involving the dysregulated expression of 
both pro- and antiinfl ammatory cytokines that are likely to 
exert secondary eff ects upon signaling pathways. Both in vitro 
and in vivo, the net outcome is the expression of infl amma-
tory mediators that is (to a greater or lesser extent) insensitive 
to GCs. Thus, the phenotype of the DUSP1 knockout super-
fi cially resembles GC insensitivity. We note that GC insensi-
tivity in asthma and infl ammatory bowel disease has been 
linked to elevated JNK and p38 MAPK activities, which failed 
to be suppressed by GCs (28, 29). This raises the interesting 
possibility that in some instances, GC insensitivity in human 
infl ammatory diseases may be related to defects in the expres-
sion or activity of DUSP1 (for review see reference 22).

MATERIALS AND METHODS
Reagents. Reagents were purchased from Sigma-Aldrich unless otherwise 

stated. Antibodies against phosphorylated JNK, ERK, and p38 MAPK were 

obtained from Cell Signaling. Antibodies against DUSP1, DUSP4, and 

iNOS were obtained from Santa Cruz Biotechnology, Inc. Antibod ies 

against tubulin-α and COX-2 were purchased from Sigma-Aldrich and 

 Cayman Chemical, respectively. A rabbit polyclonal antiserum was raised 

against a C-terminal peptide of ERK1 and detected both ERK1 and 2 in 

Western blots. DUSP1−/− mice were originally generated as described previ-

ously (21) and were rederived at the Charles River Laboratories by implanta-

tion of DUSP1−/− blastocysts into pseudopregnant C57BL/6 females.

Mice, genotyping, cells, and in vitro and in vivo treatments. All ani-

mal procedures were performed under United Kingdom Home Offi  ce regu-

lations and with local Ethical Review Committee approval. A DUSP1+/− 

Figure 4. Impaired antiinfl ammatory action of Dex in DUSP1−/− 

mice. Dorsal air pouches were created in DUSP1+/+ and DUSP1−/− mice. 

Mice were orally dosed with 1 mg/kg Dex or vehicle. After 1 h, zymosan 

was injected into the air pouches. After a further 4 h, mice were killed, 

and leukocyte numbers and cytokine concentrations in exudates were 

quantifi ed. Horizontal bars above graphs represent statistical analysis of 

differences between control and Dex-treated animals (Student’s t test).
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colony was maintained on an ad libitum expanded rodent SDS RM3 diet 

and fresh water in a specifi c pathogen-free animal facility (Federation of 

 European Laboratory Animal Science Associations). Heterozygotes were bred 

to generate DUSP1+/+ and DUSP1−/− littermates, which were identifi ed by 

a PCR-based screen of genomic DNA from tail snips. GRdim mice were 

identifi ed as described previously (5). Age- and sex-matched animals were 

used to generate BMMs by diff erentiation from BM haemopoeitic stem cells 

for 5–7 d in Dulbecco’s modifi ed Eagle’s medium supplemented with 10% 

FCS, 100 U/ml penicillin, 100 μg/ml streptomycin, and 10 ng/ml CSF1 

(PeproTech). In vitro experiments were performed using the same medium 

without CSF1. BMMs were stimulated with 10 ng/ml Salmonella typhimurium 

LPS with or without pretreatment for 4 h with Dex or vehicle (0.1% ethanol).

For the air pouch acute infl ammation model, mice were subjected to 

light anesthesia using halothane. A localized cavity on the dorsal surface of 

the mice was created by injecting 3 ml of air subcutaneously. 4 d later, a fur-

ther 1.5 ml of air was injected. 1 wk after the initial injection, the mice were 

gavaged with 1 mg/kg Dex or PBS. 1 h later, 1 mg zymosan in PBS was in-

jected into the air pouch. 4 h later, the mice were culled by asphyxiation in 

CO2. The pouches were injected with 1 ml PBS/EDTA, massaged, were 

carefully dissected, and the exudates were collected. The exudate was ana-

lyzed for cytokine content by ELISA, and a cell count was performed by 

trypan blue staining and hemocytometry.

Detection and measurement of proteins. Cell culture supernatants and 

air pouch exudates were analyzed for cytokine content using sandwich 

ELISA kits from R&D Systems. Cells were harvested by lysis in sample buff er 

(125 mM Tris-HCl, pH 6.8, 100 mM DTT, 2% SDS, 10% glycerol, and 

0.1% bromophenol blue). Proteins were detected by immunoblotting using 

appropriate horseradish peroxidase–coupled secondary antibodies (Dako-

Cytomation) and enhanced chemiluminescence reagents (GE Healthcare). 

COX-2 protein expression was estimated by scanning densitometry of 

Western blots using a calibrated imaging densitometer (GS-710; Bio-Rad 

Laboratories) and Phoretix ID software.

Measurement of mRNAs. Total cellular RNA was isolated using the 

QIAamp RNA Blood kit (QIAGEN). Several mRNAs were quantifi ed 

 using Riboquant multiprobe RPA reagents (BD Biosciences) according to 

the manufacturer’s instructions. Probes were synthesized using either the 

mCK2b template kit or a custom-made kit containing iNOS, IL-1β, LTβ, 

CXCL1, IL-6, CCL3, IL-18, L32, and GAPDH templates (both from BD 

Biosciences). Protected RNA fragments were detected and quantifi ed by 

phosphorimaging (FLA2000; Fuji). Other transcripts were measured by 

quantitative real-time PCR using One-Step TaqMan RT-PCR reagents, 

prevalidated primer-probe sets, and a thermal cycler (Prism 7700; all from 

Applied Biosystems). Changes in mRNA abundance were assessed by the 

comparative threshold cycle (∆Ct) method and normalized against GAPDH 

(measured by the same method).

Statistical analysis. The in vitro cytokine production of TNF and CXCL1 

protein levels between DUSP1+/+ and DUSP1−/− macrophages was ana-

lyzed using one-way analysis of variance with the Bonferroni Post test for 

multiple comparisons. The in vivo cellular infi ltrate and cytokine production 

levels were analyzed using the Student’s t test for normally distributed data 

and the Mann-Whitney U test for nonparametric data. All tests were per-

formed using Prism software version 4 (GraphPad). A P value < 0.05 was 

considered signifi cant.
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