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CD4 T cells have been divided into several sub-
sets as defined by their cytokine products and 
functions after their activation. These include, 
but are not limited to, Th1, Th2, and Th17 
cells. The initial two T cell subsets described 
were Th1 cells, which secrete IFN- and aid in 
the clearance of intracellular bacteria and viruses, 
and Th2 cells, which secrete IL-4 and IL-5 and 
help control extracellular pathogens. More re-
cently, Th17 cells have been described as a third 
Th cell type that express the transcription factor 
RORt and IL-17A, provide protection against 
fungi and various other extracellular bacteria, 
and are pathogenic T cells in the development 
of autoimmune inflammatory diseases (Zhu and 
Paul, 2008).

Discovery of the T cell subsets that produce 
IL-9 has expanded significantly in recent years. 
IL-9 was primarily studied as a product of Th2 
cells, and implicated as an important regula-
tory cytokine in the lung and the gastrointesti-
nal tract (Faulkner et al., 1997; Townsend et al., 
2000; Forbes et al., 2008). Schmitt et al. first 
reported that IL-9 production is dependent on 
the initial presence of IL-2, and is greatly in-
creased by the addition of TGF- in a dose-
dependent manner. They also observed that 

the addition of IL-4 to TGF- in T cell cul-
tures substantially enhanced T cell IL-9 pro-
duction (Schmitt et al., 1994). This finding has 
been recently reexamined by two groups who 
suggest that the T effector cells produced by 
TGF- and IL-4 may represent a unique sub-
set of T cells, as these cells do not express any 
of the known transcription factors for T cell 
differentiation, including T-bet, GATA-3, 
RORt, and FoxP3 (Dardalhon et al., 2008; 
Veldhoen et al., 2008). More recent work has 
shown that T cell–derived IL-9 may mediate 
immunosuppression. Adaptive T reg cells de-
rived from encephalogenic T cells produce IL-9 
(Liu et al., 2006), and our own studies have 
shown that IL-9 can be colocalized with T reg 
cells within the tolerant allograft and is func-
tionally important for allograft survival (Lu  
et al., 2006). Therefore, IL-9 is produced by  
T cells that play a role in both inflammation 
and immunosuppression.

In this report, the hierarchy of IL-9 pro-
duction by defined T cell subsets was compared. 
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We report that like other T cells cultured in the presence of transforming growth factor 
(TGF) , Th17 cells also produce interleukin (IL) 9. Th17 cells generated in vitro with IL-6 
and TGF- as well as purified ex vivo Th17 cells both produced IL-9. To determine if IL-9 
has functional consequences in Th17-mediated inflammatory disease, we evaluated the 
role of IL-9 in the development and progression of experimental autoimmune encephalo-
myelitis, a mouse model of multiple sclerosis. The data show that IL-9 neutralization and 
IL-9 receptor deficiency attenuates disease, and this correlates with decreases in Th17 cells 
and IL-6–producing macrophages in the central nervous system, as well as mast cell num-
bers in the regional lymph nodes. Collectively, these data implicate IL-9 as a Th17-derived 
cytokine that can contribute to inflammatory disease.
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which have been previously described to report the expres-
sion of RORt (Ivanov et al., 2006), and IL-17F–Thy1.1 mice. 
As shown, after RORC-GFP mice receive a CFA immuni-
zation, we see a significant amount of IL-9 production from 
these cells ex vivo as compared with an internal negative control 
of naive T cells from the same mice (Fig. 1 E). We also per-
formed the same experiment in IL-17F–Thy1.1 reporter 
mice with similar results. In addition, we further sorted IL-17F–
negative CD44hi T cells from these mice and observed that 
their capacity to produce IL-9 was less than the IL-17F–positive 
CD44hi T cells (Fig. S1).

In addition to IL-9 secretion, the expression of IL-9R was 
also evaluated on T cells. Previous work has extensively de-
scribed IL-9 as influencing MCs and macrophages; however, 
there are reports that its receptor is also expressed on effector but 
not naïve T cells (Cosmi et al., 2004; Knoops and Renauld, 
2004). As no monoclonal antibodies have been produced to 
mouse IL-9R, all of these data are based on mRNA expres-
sion profiling. To confirm and expand these results, quantita-
tive real-time PCR (qRT-PCR) was performed to quantify 
IL-9R mRNA in T cells skewed under Th1, Th2, and Th17 
conditions. The data show that Th2 and Th17 cells consis-
tently had the highest expression of IL-9R mRNA expres-
sion, whereas Th1 cells had minimal expression (Fig. 1 F). 
Thus, because of the fact that IL-9R is expressed on IL-9–
producing T cells, an autocrine impact of IL-9 on T cell dif-
ferentiation is possible.

IL-9 neutralization ameliorates EAE
EAE is one disease model in which Th17 cells are the princi-
ple mediators of the symptoms observed. To determine if IL-9 
contributes to Th17-mediated disease development, chronic 
EAE was induced in mice with myelin oligodendrocyte pep-
tide (MOG)35-55, CFA, and pertussis toxin while administrat-
ing either control Ig antibody or neutralizing IL-9 antibody 
beginning the day before immunization. IL-9 blockade con-
sistently delayed the onset of disease, and this difference was 
statistically significant. However, mice did ultimately succumb 
with the same disease severity as controls (Fig. 2 A).

Next, to determine if IL-9 blockade qualitatively altered the 
T cell response to MOG, T cell responses were monitored dur-
ing disease development. Mice were sacrificed at day 12 after 
the initial immunization, at which point all mice showed little 
or no signs of disease. At that time, CD4 T cells were purified 
from the peripheral lymph nodes. Upon analysis, no significant 
difference in MOG-specific IL-17A (Fig. 2 B) responsiveness 
by ELISPOT was observed. However, MOG-specific IL-9 
production was significantly enhanced in IL-9–treated mice 
(Fig. 2 C), suggesting a possible feedback enhancement of IL-9 
production caused by IL-9 blockade.

To assess the immune response in the CNS, qRT-PCR 
on spinal cord samples from naive mice, EAE mice treated 
with control Ig, and EAE mice treated with IL-9 antibody 
was performed (Fig. 2 D). The data show a consistent decrease 
in both IL-17A and IL-6 signals in the IL-9–treated mice but 
no effect on IFN-. These data suggest that IL-9 blockade 

To unequivocally address IL-9 production by Th17 cells, 
IL-17F reporter T cells were used and demonstrated IL-9 
production by purified Th17 cells. Given this observation, 
it was determined whether IL-9 played a functionally signifi-
cant role in the Th17-mediated disease experimental auto-
immune encephalomyelitis (EAE). The data show that IL-9 
neutralization and IL-9R deficiency attenuate disease, and 
this correlates with decreases in Th17 cells and IL-6–pro-
ducing macrophages in the central nervous system (CNS), as 
well as mast cell (MC) numbers in the regional lymph nodes. 
Collectively, these data implicate IL-9 as a Th17-derived 
cytokine that can contribute to inflammatory disease.

RESULTS AND DISCUSSION
Th17 cells produce IL-9
To confirm the observation of Schmitt et al. (1994) that 
TGF- can induce IL-9 production, we stimulated T cells 
with the indicated concentrations of TGF- and assessed their 
capacity to produce IL-9 after restimulation. As expected, we 
saw that TGF- can induce IL-9 expression in a dose-depen-
dent manner (Fig. 1 A). To further characterize IL-9 produc-
tion by various T cell subsets, cells were cultured under defined 
conditions known to induce a spectrum of T cell phenotypes. 
The data show that Th17 (TGF- + IL-6) cells and cells 
stimulated with TGF- + IL-4 produced similar amounts of 
IL-9 (Fig. 1 B). As previously reported, it is also shown that 
conditions that induce the differentiation of adaptive T reg 
cells (TGF- + IL-2) generate T cells that produce IL-9. Be-
cause the cells differentiated under adaptive T reg cell condi-
tions contain both Foxp3 and Foxp3+ T cells, Foxp3 reporter 
T cells were used to sort-purify both of these populations to 
determine their capacity to produce IL-9. The data show that 
both of these populations produce similar amounts of IL-9 
(Fig. 1 C). In general, the hierarchy of IL-9 production by 
the conditions prescribed in these studies suggests that adap-
tive T reg cells consistently produced more IL-9 than Th2 cells 
but less than cell-cultured T cells derived with TGF- and 
IL-4 or IL-6 (Th17).

Heterogeneity in T cell differentiation is inherent in the 
induction of adaptive T reg as well as Th17 cells. As had been 
executed with the adaptive T reg cell studies, T cells from 
IL-17F–Thy1.1 reporter mice (Lee et al., 2009) were cultured 
with TGF- + IL-6 and Th17 purified by magnetic sorting 
for Thy1.1. Because none of the existing monocloncal anti-
bodies to mouse IL-9 are suitable for assessing cytoplasmic 
fluorescence (Veldhoen et al., 2008), an IL-9 ELISA was used 
to determine IL-9 production. The data show that the IL-17F–
positive population (>95% Th17 cells) produced IL-9 after 
restimulation. Furthermore, the IL-17F–negative population 
(<1% Th17 cells) produced fourfold less IL-9 than the IL-17F–
positive population (Fig. 1 D). We have also performed this 
experiment an additional time using FACS sorting to obtain 
purities of >99% for both populations with similar results 
(unpublished data). To additionally confirm that IL-9 pro-
duction by Th17 is not solely an in vitro phenomenon, we 
also used FACS sorting of cells from RORC-GFP mice, 

D
ow

nloaded from
 http://rup.silverchair.com

/jem
/article-pdf/206/8/1653/1902335/jem

_20090246.pdf by guest on 13 M
arch 2024

http://www.jem.org/cgi/content/full/jem.20090246/DC1


JEM VOL. 206, August 3, 2009 1655

BRIEF DEFINITIVE REPORT

what was observed with neutralizing antibody. However, 
IL-9R–deficient mice consistently had decreased severity 
over time and this difference was statistically significant. This 
suggests IL-9 may exert an effect throughout the progression 
of disease (Fig. 3 A).

Because the initial priming of Th17 cells in IL-9–treated 
mice appears equivalent to controls in lymph node but de-
creased in the CNS, we sought to determine if the delay in 
disease severity in IL-9R–deficient mice may be caused by  
a decreased ability to traffic into the CNS. Recently, two 

preferentially attenuates Th17 responses. In addition, no dif-
ference in the mRNA expression of Ebi3, IL-10, IL-12a 
(p35), or IL-12 (p40) was observed (unpublished data).

IL-9R deficiency impairs multiple aspects of disease
The data show that IL-9 blockade delays the induction of 
EAE; however, these mice eventually progress to a similar 
extent as controls. To independently evaluate the role of  
IL-9, the development of EAE in IL-9R KO mice was evalu-
ated. IL-9R KO mice had delayed onset of disease, similar to 

Figure 1. Th17 cells produce IL-9. (A) T cells were stimulated in vitro with the indicated concentration of TGF- for 4 d. Cells were washed, counted, 
and restimulated in the presence of CD3/CD28 for 24 h before supernatants were collected for ELISA. Results show means ± SD of two independent 
experiments. (B) Effector T cells were generated in vitro under the indicated conditions for 4 d and were restimulated as in A. Results are representative of 
at least four independent experiments. (C) Cells from TGF- + IL-2 cultures were sorted based into FoxP3-GFP–positive and –negative subsets and  
restimulated as in A. Results are representative of four independent experiments. (D) T cells cultured under Th17 conditions were separated into IL-17F–
positive and –negative subsets based on Thy1.1 expression using MACS columns (percentages are shown). Representative purity of both populations is 
shown. Cells were restimulated as in A for IL-9 production. Results were pooled from two independent experiments, and a Student’s t test was performed 
to compare the samples. Means ± SD are shown. (E) RORC-GFP mice were immunized with MOG emulsified in CFA, and splenic T cells were harvested 7 d 
later for sorting into the indicated populations (percentages are shown). Cells were restimulated with PMA/ionomycin for 4 h before supernatant was 
collected for ELISA. Results show means ± SD of two independent experiments, and a Student’s t test was performed to compare the samples. (F) qRT-PCR 
from Th1, Th2, and Th17 cells and BM-MCs was performed for IL-9R expression. All samples were standardized to the expression of IL-9R by BM-MCs. 
Results are representative of three independent samples from each experimental group.
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phocytes was observed by CNS cell isolation. However, the 
numbers of IL-17A+ CD4 T cells and IL-6+ macrophages in 
the CNS were decreased in IL-9R KO mice (Fig. 4, A and B). 
In addition, IFN- responses were not significantly different 
between groups (unpublished data).

It has been reported that MC deficiency can decrease the 
severity of EAE (Secor et al., 2000), and that MC accumula-
tion in the regional lymph nodes accompanies disease devel-
opment (Tanzola et al., 2003). Given the fact that IL-9 is a 
growth and differentiation factor of MCs (Zhou et al., 2001), 
MC accumulation in immunized WT and IL-9R KO mice 
was determined during the development of EAE. First, there 
are no defects in MC numbers in naive IL-9R KO mice 
(Steenwinckel et al., 2007). Second, WT EAE-immunized 
mice had elevated MC numbers (Brenner et al., 1994). Third, 
no MC accumulation was observed in immunized IL-9R 
KO mice (Fig. 4 C). Hence, it appears that IL-9 is critical for 

groups have highlighted the importance of CCR6 expression 
during the initiation of EAE (Liston et al., 2009; Reboldi  
et al., 2009); therefore, we examined T cell responses in the 
lymph node on day 7 after immunization. In this case we 
consistently found that the initial induction of CCR6 is 
equivalent between WT and KO mice (Fig. 3 C). In addi-
tion, at late time points histochemistry performed on spinal 
cord samples indicated that lymphocyte infilitrates were also 
equivalent between these two groups (Fig. 3 B). This sug-
gests that IL-9 responsiveness is not necessary for trafficking 
of cells to the CNS.

To further characterize the immune response in the CNS 
as well as to determine the cellular sources of IL-17A and IL-6 
observed by qRT-PCR in IL-9–treated mice, flow cytom-
etry was performed on isolated lymphocytes from the brain 
and spinal cord of diseased WT and IL-9R KO mice. No 
significant difference in the total numbers of infiltrating lym-

Figure 2. Treatment with neutralizing anti–IL-9 antibody slightly delays EAE. (A) Mice were immunized for EAE and were treated with control Ig 
(n = 6) or IL-9 antibody (n = 6) i.p. every other day starting with day 1. Mice were scored for disease severity, and the mean ± SEM for each time point 
is indicated. Results are representative of three independent experiments. The p-value obtained by a Mann-Whitney U test is indicated. (B and C) CD4  
T cells from the peripheral lymph nodes of EAE-immunized mice were taken from each group at day 12 (score = 0 or 1 for all mice used) and stimulated 
with antigen-presenting cells and MOG for (B) IL-17A spot-forming units (SFU) in ELISPOTs or (C) IL-9 concentration in ELISA. Means ± SD are shown for 
both graphs. *, P < 0.05 from the control sample by a Student’s t test. Results shown are pooled from three independent experiments. (D) RNA was made 
from spinal cord samples of EAE-immunized mice from each group at the peak of disease severity in control mice, and the mean expression relative to  
-actin is shown. Results are representative of four naive, eight control, and eight IL-9–treated mice taken from three independent experiments.
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eventually succumbed to the same extent as WT T cells → 
WT controls. However, the transfer of IL-9R KO T cells 
→ IL-9R KO hosts displayed both delayed onset and re-
duced severity of disease. Overall, these results suggest that 
IL-9R expression on both the encephalitogenic T cells and 
other host cell types contributes to the effect seen in IL-9R 
KO mice.

The findings presented establish (a) the hierarchy of IL-9 
production by differentiated T cell subsets and purified subsets 
derived from these cells, (b) that purified Foxp3+ adaptive T 
reg and Th17 cells produce IL-9, (c) that IL-9 contributes to 
the development of EAE, (d) that IL-9 influences the expres-
sion of IL-17A and IL-6 in the CNS, and (e) that IL-9 mediates 
the accumulation of MCs in the regional lymph nodes during 
the development of EAE. Collectively, the findings implicate 
IL-9 as a mediator of Th17-driven inflammatory diseases.

The data show that both Th17 and TGF- + IL-4 T cells 
produce high levels of IL-9 upon restimulation. Furthermore, 
Foxp3+ and Foxp3 T cells from in vitro generation of adap-
tive T reg cells also produce IL-9. To definitively show that 
Th17 cells produce IL-9, reporter Th17 cells were isolated 
and IL-9 production was confirmed. These results add to the 
growing list of IL-9–producing T cells, which includes natu-
ral T reg, adaptive T reg, and Th2 cells (Gessner et al., 1993; 
Schmitt et al., 1994; Hauber et al., 2004; Liu et al., 2006; Lu 
et al., 2006). In contrast, Veldhoen et al. (2008) reported that 
neither Th2, adaptive T reg, natural T reg, nor Th17 cells 
produce IL-9. The differences between that study and the 
findings in this paper, as well as others (Gessner et al., 1993; 
Schmitt et al., 1994; Hauber et al., 2004; Liu et al., 2006; Lu 
et al., 2006), has yet to be resolved.

In addition, the data show that IL-9 blockade by antibody 
or by IL-9R deficiency can ameliorate EAE. However, it must 
be noted that the phenotype of the IL-9R KO mice is much 
less robust than reported in IL-6 KO (Korn et al., 2007), IL-23 
(p19 and p40) KO (Becher et al., 2002; Cua et al., 2003), 
and RORt KO mice (Ivanov et al., 2006), which are com-
pletely protected from disease. Functionally, the data show 
that disease in IL-9R KO mice correlates with a reduction of 
IL-17A+ CD4 T cells and IL-6+ macrophages in the CNS of 
mice, as well as a decrease in MC numbers in the lymph 
nodes of mice. The later finding is not surprising, as IL-9 is 
known as a growth and activation factor for MCs (Faulkner 
et al., 1997; Townsend et al., 2000; Forbes et al., 2008). Ex-
tensive work performed by Melissa Brown’s group has also 
shown that MC-deficient W/Wv mice display suboptimal 
EAE (Secor et al., 2000; Tanzola et al., 2003; Gregory et al., 
2005), and we have observed a similar phenotype in MC-
deficient Wsh mice (unpublished data).

The findings presented, in the context of the emerging 
literature, establish that IL-9 cannot be readily assigned as being 
either a pro- or antiinflammatory cytokine. Rather, its func-
tion may be as an autocrine differentiation factor for inflam-
matory T cells and/or T reg cells, or as a paracrine factor 
regulating the activities of macrophages and/or MCs to me-
diate inflammation or suppression.

the inflammation-induced accumulation of MCs during dis-
ease development.

A functional role for IL-9 in encephalitogenic T cells 
was sought because differentiated Th17 cells express IL-9R 
mRNA. As such, adoptive transfer studies were performed 
using WT or IL-9R KO MOG-primed T cells. Further-
more, adoptive transfer of WT T cells into WT or IL-9R 
KO hosts was performed to address whether host expres-
sion of IL-9R was important to the development of disease 
(Fig. 4). The transfer of IL-9R KO T cells → WT and WT 
T cells → IL-9R KO hosts caused a slight delay in disease 
onset and reduced severity at early time points, but the mice 

Figure 3. IL-9R deficiency ameliorates the severity of EAE. (A) WT 
(n = 20) and KO (n = 21) mice were immunized for EAE and scored to gen-
erate graphs of mean disease score ± SEM. Results were pooled from three 
independent experiments, and a Mann-Whitney U test was performed to 
assess the p-value shown. (B) Transverse spinal cord sections of WT (n = 8) 
and KO (n = 8) mice from two independent experiments were taken to 
perform the hematoxylin and eosin staining shown. Bar, 200 µm. (C) On 
day 7 after EAE immunization, draining lymph nodes of WT and KO mice 
were taken and CD4 T cells were assessed for CD44 and CCR6 expression 
(percentages are shown). Results are representative of three independent 
experiments with four to six mice from each group per experiment.
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emulsified in CFA (Sigma-Aldrich) on day 0 and an i.p. injection of 400 ng 
pertussis toxin (Sigma-Aldrich) on days 0 and 2. Mice were scored daily 
as previously described (Becher et al., 2002). In some experiments, mice 
were also treated with 200 µg of control Ig or IL-9 (MM9C1) antibody 
(MedImmune) i.p. every other day starting the day before immunization. 
For adoptively transferred EAE, T cells from WT and KO mice on day 
14 after EAE induction were isolated and further cultured for 3 d in  
vitro to promote Th17 cell differentiation, as previously described (Ogura  
et al., 2008). Each mouse received 1.5–2 × 106 cells intravenously and 200 
ng pertussis toxin on the day of the cell transfer and 7 d after the initial 
immunization.

Histochemistry. Spinal cords from perfused mice with EAE were isolated. 
Transverse sections of spinal cords (5-µm) were cut and stained with hema-
toxylin and eosin. Photographs of the sections were taken at 20× magnifica-
tion using a microscope (BX41; Olympus).

MATERIALS AND METHODS
Mice. C57BL/6 mice were purchased from Charles River Laboratories. IL-9R–
deficient mice (Steenwinckel et al., 2007) were provided by J.-C. Renauld 
(Ludwig Institute, Brussels, Belgium) and were bred in-house. FoxP3-GFP 
reporter mice were bred in-house after being provided by A. Rudensky 
(University of Washington, Seattle, WA). Spleen cells from IL-17F–Thy1.1 
reporter mice were provided by C.T. Weaver (University of Alabama at 
Birmingham, Birmingham, AL) and have been previously described (Lee  
et al., 2009). RORC-GFP mice (Ivanov et al., 2006) were purchased from 
the Jackson Laboratory. All experiments using mice were performed in ac-
cordance with protocols approved by the Institutional Animal Care and Use 
Committee of Dartmouth College.

EAE induction and clinical evaluation. Age-matched female 
C57BL/6 and IL-9R KO mice that were 6–10 wk old were immunized 
subcutaneously with 200 µg of MOG35-55 peptide (Peptides International) 

Figure 4. IL-9R expression by both T cells and other cell types contributes to adoptively transferred EAE. (A and B) Lymphocytes from the 
brains and spinal cords of WT (n = 4) and KO (n = 4) mice were isolated, counted, and stained for (A) CD4 T cells and IL-17A and (B) macrophages and 
IL-6 after restimulation. The frequency of cytokine-producing cells by FACS was used to calculate the absolute numbers of cells shown. *, P < 0.01 by 
the Student’s t test. Results show means ± SD and are representative of three independent experiments. (C) Peripheral lymph nodes of mice were pooled 
and enriched for FCRI expression and stained for c-kit to identify MCs. Representative FACS plots are shown of WT and KO mice. Absolute numbers of 
MCs in lymph nodes were determined for WT naive (n = 5), KO naive (n = 5), WT EAE (n = 12), and KO EAE (n = 14) mice pooled from four independent 
experiments. A Student’s t test between the WT naive group and each other group was performed to assess statistical significance. Horizontal bars  
represent means. (D) T cells from WT and KO mice with EAE were transferred to either WT or KO mice to cause disease. Mice were scored and the mean 
disease scores ± SEM are shown. A Mann-Whitney U test was done to compare the WT T cell → WT group with each of the indicated groups to obtain 
the p-values shown. Results were pooled from two independent experiments, and the numbers of mice used are as follows: WT T cell → WT, n = 16;  
KO T cell → WT, n = 15; WT T cell → KO, n = 14; and KO T cell → KO, n = 12.
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