The virus inhibitory activity and selectivity of certain benzimidazole, benzotriazole, and naphthimidazole derivatives were determined with influenza B and polio type 2 viruses.

Among the sixty-five compounds examined, several were highly active inhibitors of influenza B virus multiplication in the chorioallantoic membrane in vitro. The following compounds, listed in order of increasing inhibitory activity, were more than 100 times as active as benzimidazole: 5-(4'-toluenesulfonamido)-benzimidazole, 5-hydroxybenzotriazole-4-carboxy-α-naphthylamide, 4,5,6-trichlorobenzotriazole, 5-(3',4'-dichlorobenzenesulfonamido)-benzimidazole, 5-(3',4'-dichlorobenzenesulfonamido) - 1 - (3'',4'' - dichlorobenzenesulfonyl)-benzimidazole, 4-(p-chlorophenylazo)-5-hydroxybenzotriazole, and 4,5,6,7-tetrachlorobenzotriazole. However, none showed high selectivity.

Of the sixty-five compounds studied with influenza virus, twenty-five were also examined with poliovirus type 2 in monkey kidney cells in vitro. Included in this group were five of the seven most active inhibitors of influenza virus, listed above. All five were more than 100 times as active in inhibiting poliovirus multiplication as the reference compound. In addition to these, two other compounds were highly active: 2-(α-hydroxybenzyl)-benzimidazole (HBB), and 2-(α-hydroxybenzyl)-5-chlorobenzimidazole, with relative inhibitory activities of 78 and 130, respectively. These two compounds, and the much less active 5,6-dichloro derivative of HBB, were the only ones which showed no, or only slight, toxic effects on cells at concentrations sufficient to cause considerable inhibition of poliovirus multiplication. Furthermore, HBB and the 5-chloro derivative were the only compounds which caused significant inhibition of the cytopathic effects of poliovirus.

HBB, and its 5-chloro and 5,6-dichloro derivatives had no effect on the multiplication of influenza B virus in the chorioallantoic membrane. In addition, HBB failed to inhibit influenza B virus multiplication and cytopathic effects in monkey kidney cells.

Inhibition of poliovirus-induced cell damage by HBB was characterized by the following features: the curves relating reduction in virus yield or cytopathic effects to concentration of the compound followed an approximately parallel course; somewhat higher concentrations were required to inhibit virus-induced cell damage than to reduce virus yield. HBB suppressed viral cytopathic effects for a period of time which varied directly with the concentration of compound, and inversely with the size of virus inoculum. The development of virus-induced cell damage in treated cultures on prolonged incubation was not due to inactivation of HBB. The inhibitory effect of HBB on virus-induced cell damage was reversible by removal of the compound. HBB inhibited viral cytopathic effects when given during the exponential increase phase in virus multiplication. Inhibition of virus-induced cell damage by HBB was demonstrated by photomicrographs. HBB did not inactivate the infectivity of poliovirus type 2.