This study has examined the ability of adoptively transferred CD4+ and CD8+ T cells to mediate rejection of a fully allogeneic DA renal graft in the PVG nude rat. Transfer, at the time of transplantation, of naive CD4+ T cells caused rapid graft rejection and primed CD4+ cells were several times more potent. In contrast, naive or specifically sensitized CD8+ cells were entirely ineffective at mediating renal allograft rejection. Whereas nonrejecting grafts showed only a mild cellular infiltrate, rejecting grafts in CD4+ reconstituted animals showed a substantial infiltrate and many of the infiltrating cells had a phenotype (MRC OX8+, MRC OX19-), consistent with NK cells. Experiments using a mAb (HIS 41) against an allotypic determinant of the leukocyte common antigen confirmed that the majority (greater than 80%) of the cellular infiltrate in rejecting grafts derived from the host rather than from the CD4+ inoculum. Infiltrating mononuclear cells, obtained from rejecting allografts 7 d after transplantation in CD4+-injected PVG nude hosts, showed high levels of in vitro cytotoxicity against not only kidney donor strain Con A blasts but also third-party allogeneic Con A blasts, as well as against both NK and LAK susceptible targets. When splenocytes from nontransplanted nude PVG rats were tested in vitro they also demonstrated high levels of lytic activity against both NK and LAK susceptible targets as well as allogeneic Con A blasts, which were not susceptible to lysis by spleen cells from euthymic rats. These findings suggest that injected CD4+ cells may cause renal allograft rejection by the recruitment of extrathymically derived, widely alloreactive cells into the kidney in this model of graft rejection.

This content is only available as a PDF.