Speed and selectivity of hepatocyte invasion by malaria sporozoites have suggested a receptor-mediated mechanism and the specific interaction of the circumsporozoite (CS) protein with liver-specific heparan sulfate proteoglycans (HSPGs) has been implicated in the targeting to the liver. Here we show that the CS protein interacts not only with cell surface heparan sulfate, but also with the low density lipoprotein receptor-related protein (LRP). Binding of 125I-CS protein to purified LRP occurs with a Kd of 4.9 nM and can be inhibited by the receptor-associated protein (RAP). Blockage of LRP by RAP or anti-LRP antibodies on heparan sulfate-deficient CHO cells results in more than 90% inhibition of binding and endocytosis of recombinant CS protein. Conversely, blockage or enzymatic removal of the cell surface heparan sulfate from LRP-deficient embryonic mouse fibroblasts yields the same degree of inhibition. Heparinase-pretreatment of LRP-deficient fibroblasts or blockage of LRP on heparan sulfate-deficient CHO cells by RAP, lactoferrin, or anti-LRP antibodies reduces Plasmodium berghei invasion by 60-70%. Parasite development in heparinase-pretreated HepG2 cells is inhibited by 65% when RAP is present during sporozoite invasion. These findings suggest that malaria sporozoites utilize the interaction of the CS protein with HSPGs and LRP as the major mechanism for host cell invasion.

This content is only available as a PDF.