The interrelationship of several physiological receptors which influence the hydroosmotic response of the toad urinary bladder was studied employing neurohypophyseal peptides, prostaglandin E1, theophylline, and cyclic nucleotides. The binding property of agonists (pD2), synergists (pS2), competitive antagonists (pA2), and noncompetitive antagonists (pD2') was determined after a suitable methodology had been developed. A series of neurohypophyseal peptides was examined in detail for their catalytic activity. It was found that the replacement of the hydroxy radical of the tyrosine residue in oxytocin by a methoxy and then by an ethoxy radical led to a progressive decline in the catalytic activity of the hormone—corresponding to a change from agonist to partial agonist to competitive antagonist. [4-Leucine]-mesotocin behaved as a competitive antagonist of oxytocin. Prostaglandin E1 (PGE1) was found to be a noncompetitive inhibitor of neurohypophyseal peptides and theophylline; whereas the maximal hydroosmotic response of the bladder to [2-O-methyltyrosine]-oxytocin and theophylline was greatly depressed by PGE1, the response to saturating concentrations of oxytocin was only slightly diminished—a finding which reveals a "receptor reserve" for oxytocin. Saturating concentrations of [2-O-ethyltyrosine]-oxytocin, inactive per se, potentiate theophylline—disclosing a "threshold phenomenon" for the mediation of neurohypophyseal hormone action. It is concluded that neurohypophyseal peptides are capable of producing graded effects on adenyl cyclase both below and above the range of enzyme activity which evokes graded changes in membrane permeability.
Article|
August 01 1970
Threshold and Receptor Reserve in the Action of Neurohypophyseal Peptides : A study of synergists and antagonists of the hydroosmotic response of the toad urinary bladder
Patrick Eggena,
Patrick Eggena
From the Department of Physiology, The Mount Sinai Medical and Graduate Schools of the City University of New York, New York 10029, and the Medical Research Center, Brookhaven National Laboratory, Upton, New York 11973
Search for other works by this author on:
Irving L. Schwartz,
Irving L. Schwartz
From the Department of Physiology, The Mount Sinai Medical and Graduate Schools of the City University of New York, New York 10029, and the Medical Research Center, Brookhaven National Laboratory, Upton, New York 11973
Search for other works by this author on:
Roderich Walter
Roderich Walter
From the Department of Physiology, The Mount Sinai Medical and Graduate Schools of the City University of New York, New York 10029, and the Medical Research Center, Brookhaven National Laboratory, Upton, New York 11973
Search for other works by this author on:
Patrick Eggena
From the Department of Physiology, The Mount Sinai Medical and Graduate Schools of the City University of New York, New York 10029, and the Medical Research Center, Brookhaven National Laboratory, Upton, New York 11973
Irving L. Schwartz
From the Department of Physiology, The Mount Sinai Medical and Graduate Schools of the City University of New York, New York 10029, and the Medical Research Center, Brookhaven National Laboratory, Upton, New York 11973
Roderich Walter
From the Department of Physiology, The Mount Sinai Medical and Graduate Schools of the City University of New York, New York 10029, and the Medical Research Center, Brookhaven National Laboratory, Upton, New York 11973
Received:
April 09 1969
Online ISSN: 1540-7748
Print ISSN: 0022-1295
Copyright © 1970 by The Rockefeller University Press
1970
J Gen Physiol (1970) 56 (2): 250–271.
Article history
Received:
April 09 1969
Citation
Patrick Eggena, Irving L. Schwartz, Roderich Walter; Threshold and Receptor Reserve in the Action of Neurohypophyseal Peptides : A study of synergists and antagonists of the hydroosmotic response of the toad urinary bladder . J Gen Physiol 1 August 1970; 56 (2): 250–271. doi: https://doi.org/10.1085/jgp.56.2.250
Download citation file: