We have studied the pattern of electrical currents through amebas (mainly Chaos chaos) with an ultrasensitive extracellular vibrating probe. Amebas drive both steady currents and current pulses through themselves. Relatively steady current with an average surface density of 0.1-0.2 muA/cm2 enters the rear quarter of an ameba and leaves its pseudopods. Streaming reversals are preceded by changes in this current pattern and the region with the largest new inward current becomes the new tail. Ion substitution studies suggest that some of the steady inward current is carried by calcium ions. Characteristic stimulated pulses of current sometimes follow the close approach of the vibrating probe to the side of an advancing pseudopod. Such a pulse enters the cytoplasm through a small patch of membrane near the probe (and seems to leave through the adjacent membrane), is usually followed by hyaline cap and then by pseudopod initiation, is calcium dependent, lasts about 5-10 s, and has a peak density of about 0.4 muA/cm2. Spontaneous pulses of similar shape and duration may enter or leave any part of an animal. They are much less localized, tend to have higher peak densities, and occur in physiological salt solutions at about 0.2-4 times per minute. Retraction of a pseudopod is always accompanied or preceded by a spontaneous pulse which leaves its sides.

This content is only available as a PDF.