Table I

Scheme I (coupled model) |

k_{01} = 110 exp[−1.0(F/RT) (V + 120)] s^{−1 } |

(τ_{act}, −120 to −80 mV; see Fig. 7, Zhou et al., 1998) |

k_{10} = 66/{1.0 + exp[−0.70(F/RT) (V + 20)]} s^{−1 } |

(τ_{tail}, −20 to 80 mV; see Fig. 7, Zhou et al., 1998) |

k_{12} = 10 exp[−1.5(F/RT) (V + 120)] s^{−1 } |

(τ_{i}, −120 to 80 mV; see Fig. 8, Zhou et al., 1998) |

k_{21} = 4 exp[1.0(F/RT) (V − 40)] s^{−1 } |

(τ_{recovery}, 40 to 0 mV; see Fig. 8, Zhou et al., 1998) |

k_{23} = 0.005 exp[−1.7(F/RT) (V + 30)] s^{−1 } |

(use dependent inactivation, hysteresis) |

k_{32} = 0.005 exp[3.0(F/RT) (V + 30)] s^{−1 } |

(use dependent recovery, hysteresis) |

Scheme II (independent model) |

k_{01}, k_{10}, k_{12}, k_{23}, k_{32} (same as Scheme I) |

k′_{21} = 4 exp[1.0(F/RT) (V) s^{−1 } |

Scheme III (modified from Wang et al., 1997) |

k_{01} (same as Scheme I) |

k″_{10} = 2*30.8266 exp[0.64(F/RT) (V)] s^{−1 } |

(double values uses by Wang et al., 1997) |

(All other rate equations shifted by −5 mV) |

k″_{12} = 0.0689 exp[−1.1(F/RT) (V + 5)] s^{−1 } |

k″_{21} = 13.733 exp[1.0(F/RT) (V + 5)] s^{−1 } |

k″_{23} = 36.778 s^{−1 } |

k″_{32} = 23.761 s^{−1 } |

k″_{34} = 47.002 exp[−1.6(F/RT) (V + 5)] s^{−1 } |

k″_{43} = 22.348 exp[0.3(F/RT) (V + 5)] s^{−1 } |

Scheme I (coupled model) |

k_{01} = 110 exp[−1.0(F/RT) (V + 120)] s^{−1 } |

(τ_{act}, −120 to −80 mV; see Fig. 7, Zhou et al., 1998) |

k_{10} = 66/{1.0 + exp[−0.70(F/RT) (V + 20)]} s^{−1 } |

(τ_{tail}, −20 to 80 mV; see Fig. 7, Zhou et al., 1998) |

k_{12} = 10 exp[−1.5(F/RT) (V + 120)] s^{−1 } |

(τ_{i}, −120 to 80 mV; see Fig. 8, Zhou et al., 1998) |

k_{21} = 4 exp[1.0(F/RT) (V − 40)] s^{−1 } |

(τ_{recovery}, 40 to 0 mV; see Fig. 8, Zhou et al., 1998) |

k_{23} = 0.005 exp[−1.7(F/RT) (V + 30)] s^{−1 } |

(use dependent inactivation, hysteresis) |

k_{32} = 0.005 exp[3.0(F/RT) (V + 30)] s^{−1 } |

(use dependent recovery, hysteresis) |

Scheme II (independent model) |

k_{01}, k_{10}, k_{12}, k_{23}, k_{32} (same as Scheme I) |

k′_{21} = 4 exp[1.0(F/RT) (V) s^{−1 } |

Scheme III (modified from Wang et al., 1997) |

k_{01} (same as Scheme I) |

k″_{10} = 2*30.8266 exp[0.64(F/RT) (V)] s^{−1 } |

(double values uses by Wang et al., 1997) |

(All other rate equations shifted by −5 mV) |

k″_{12} = 0.0689 exp[−1.1(F/RT) (V + 5)] s^{−1 } |

k″_{21} = 13.733 exp[1.0(F/RT) (V + 5)] s^{−1 } |

k″_{23} = 36.778 s^{−1 } |

k″_{32} = 23.761 s^{−1 } |

k″_{34} = 47.002 exp[−1.6(F/RT) (V + 5)] s^{−1 } |

k″_{43} = 22.348 exp[0.3(F/RT) (V + 5)] s^{−1 } |

*V* is membrane potential in millivolts, *F* is Faraday's constant, *R* is the gas constant, *T* is temperature.

This site uses cookies. By continuing to use our website, you are agreeing to our privacy policy.